Correct Aux and proof sketch that it's same as alpha-equality, following Dan Synek's proof.
theory Tutorial6
imports "../Nominal/Nominal2"
begin
section {* Type Schemes *}
text {*
Nominal2 can deal also with more complicated binding
structures; for example the finite set of binders found
in type schemes.
*}
atom_decl name
nominal_datatype ty =
Var "name"
| Fun "ty" "ty" (infixr "\<rightarrow>" 100)
and tys =
All as::"name fset" ty::"ty" binds (set+) as in ty ("All _. _" [100, 100] 100)
text {* Some alpha-equivalences *}
lemma
shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) = All {|b, a|}. (Var a) \<rightarrow> (Var b)"
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def intro: permute_zero)
lemma
shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) = All {|a, b|}. (Var b) \<rightarrow> (Var a)"
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def swap_atom)
(metis permute_flip_at)
lemma
shows "All {|a, b, c|}. (Var a) \<rightarrow> (Var b) = All {|a, b|}. (Var a) \<rightarrow> (Var b)"
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def intro: permute_zero)
lemma
assumes a: "a \<noteq> b"
shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) \<noteq> All {|c|}. (Var c) \<rightarrow> (Var c)"
using a
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def)
end