Tutorial/Minimal.thy
author Cezary Kaliszyk <cezarykaliszyk@gmail.com>
Fri, 30 Mar 2012 07:15:24 +0200
changeset 3143 1da802bd2ab1
parent 3132 87eca760dcba
child 3235 5ebd327ffb96
permissions -rw-r--r--
Correct Aux and proof sketch that it's same as alpha-equality, following Dan Synek's proof.

theory Minimal
imports "Nominal2"
begin

atom_decl name

nominal_datatype lam =
  Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam"  binds x in l ("Lam [_]. _" [100, 100] 100)



lemma alpha_test:
  shows "Lam [x]. (Var x) = Lam [y]. (Var y)"
  by (simp add: lam.eq_iff Abs1_eq_iff lam.fresh fresh_at_base)

end