the function translating lambda terms to locally nameless lambda terms; still needs a stronger abs_eq_iff lemma...at the moment only proved for restrictions
theory Term5+ −
imports "../Nominal2_Atoms" "../Nominal2_Eqvt" "../Nominal2_Supp" "../Abs" "../Perm" "../Fv" "../Rsp"+ −
begin+ −
+ −
atom_decl name+ −
+ −
datatype rtrm5 =+ −
rVr5 "name"+ −
| rAp5 "rtrm5" "rtrm5"+ −
| rLt5 "rlts" "rtrm5" --"bind (bv5 lts) in (rtrm5)"+ −
and rlts =+ −
rLnil+ −
| rLcons "name" "rtrm5" "rlts"+ −
+ −
primrec+ −
rbv5+ −
where+ −
"rbv5 rLnil = {}"+ −
| "rbv5 (rLcons n t ltl) = {atom n} \<union> (rbv5 ltl)"+ −
+ −
+ −
setup {* snd o define_raw_perms (Datatype.the_info @{theory} "Term5.rtrm5") 2 *}+ −
print_theorems+ −
+ −
local_setup {* snd o define_fv_alpha (Datatype.the_info @{theory} "Term5.rtrm5")+ −
[[[], [], [(SOME (@{term rbv5}, false), 0, 1)]], [[], []]] [(@{term rbv5}, 1, [[], [(0,NONE), (2,SOME @{term rbv5})]])] *}+ −
print_theorems+ −
+ −
notation+ −
alpha_rtrm5 ("_ \<approx>5 _" [100, 100] 100) and+ −
alpha_rlts ("_ \<approx>l _" [100, 100] 100)+ −
thm alpha_rtrm5_alpha_rlts_alpha_rbv5.intros+ −
+ −
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha5_inj}, []), (build_rel_inj @{thms alpha_rtrm5_alpha_rlts_alpha_rbv5.intros} @{thms rtrm5.distinct rtrm5.inject rlts.distinct rlts.inject} @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} ctxt)) ctxt)) *}+ −
thm alpha5_inj+ −
+ −
lemma rbv5_eqvt[eqvt]:+ −
"pi \<bullet> (rbv5 x) = rbv5 (pi \<bullet> x)"+ −
apply (induct x)+ −
apply (simp_all add: eqvts atom_eqvt)+ −
done+ −
+ −
lemma fv_rtrm5_rlts_eqvt[eqvt]:+ −
"pi \<bullet> (fv_rtrm5 x) = fv_rtrm5 (pi \<bullet> x)"+ −
"pi \<bullet> (fv_rlts l) = fv_rlts (pi \<bullet> l)"+ −
"pi \<bullet> (fv_rbv5 l) = fv_rbv5 (pi \<bullet> l)"+ −
apply (induct x and l)+ −
apply (simp_all add: eqvts atom_eqvt)+ −
done+ −
+ −
local_setup {*+ −
(fn ctxt => snd (Local_Theory.note ((@{binding alpha5_eqvt}, []),+ −
build_alpha_eqvts [@{term alpha_rtrm5}, @{term alpha_rlts}, @{term alpha_rbv5}] (fn _ => alpha_eqvt_tac @{thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct} @{thms alpha5_inj permute_rtrm5_permute_rlts.simps} ctxt 1) ctxt) ctxt)) *}+ −
print_theorems+ −
+ −
lemma alpha5_reflp:+ −
"y \<approx>5 y \<and> (x \<approx>l x \<and> alpha_rbv5 x x)"+ −
apply (rule rtrm5_rlts.induct)+ −
apply (simp_all add: alpha5_inj)+ −
apply (rule_tac x="0::perm" in exI)+ −
apply (simp add: eqvts alpha_gen fresh_star_def fresh_zero_perm)+ −
done+ −
+ −
lemma alpha5_symp:+ −
"(a \<approx>5 b \<longrightarrow> b \<approx>5 a) \<and>+ −
(x \<approx>l y \<longrightarrow> y \<approx>l x) \<and>+ −
(alpha_rbv5 x y \<longrightarrow> alpha_rbv5 y x)"+ −
apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)+ −
apply (simp_all add: alpha5_inj)+ −
apply (erule conjE)++ −
apply (erule exE)+ −
apply (rule_tac x="-pi" in exI)+ −
apply (rule alpha_gen_sym)+ −
apply (simp add: alphas)+ −
apply (simp add: alpha5_eqvt)+ −
apply (simp add: alphas)+ −
apply clarify+ −
apply simp+ −
done+ −
+ −
lemma alpha5_transp:+ −
"(a \<approx>5 b \<longrightarrow> (\<forall>c. b \<approx>5 c \<longrightarrow> a \<approx>5 c)) \<and>+ −
(x \<approx>l y \<longrightarrow> (\<forall>z. y \<approx>l z \<longrightarrow> x \<approx>l z)) \<and>+ −
(alpha_rbv5 k l \<longrightarrow> (\<forall>m. alpha_rbv5 l m \<longrightarrow> alpha_rbv5 k m))"+ −
apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct)+ −
apply (rule_tac [!] allI)+ −
apply (simp_all add: alpha5_inj)+ −
apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *})+ −
apply (simp_all add: alpha5_inj)+ −
defer+ −
apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *})+ −
apply (simp_all add: alpha5_inj)+ −
apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *})+ −
apply (simp_all add: alpha5_inj)+ −
apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *})+ −
apply (simp_all add: alpha5_inj)+ −
apply (erule conjE)++ −
apply (erule exE)++ −
apply (rule_tac x="pi + pia" in exI)+ −
apply (rule alpha_gen_trans)+ −
prefer 6+ −
apply assumption+ −
apply (simp_all add: alphas alpha5_eqvt)+ −
apply (clarify)+ −
apply simp+ −
done+ −
+ −
lemma alpha5_equivp:+ −
"equivp alpha_rtrm5"+ −
"equivp alpha_rlts"+ −
unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def+ −
apply (simp_all only: alpha5_reflp)+ −
apply (meson alpha5_symp alpha5_transp)+ −
apply (meson alpha5_symp alpha5_transp)+ −
done+ −
+ −
quotient_type+ −
trm5 = rtrm5 / alpha_rtrm5+ −
and+ −
lts = rlts / alpha_rlts+ −
by (auto intro: alpha5_equivp)+ −
+ −
local_setup {*+ −
(fn ctxt => ctxt+ −
|> snd o (Quotient_Def.quotient_lift_const ("Vr5", @{term rVr5}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("Ap5", @{term rAp5}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("Lt5", @{term rLt5}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("Lnil", @{term rLnil}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("Lcons", @{term rLcons}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("fv_trm5", @{term fv_rtrm5}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("fv_lts", @{term fv_rlts}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("fv_bv5", @{term fv_rbv5}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("bv5", @{term rbv5}))+ −
|> snd o (Quotient_Def.quotient_lift_const ("alpha_bv5", @{term alpha_rbv5})))+ −
*}+ −
print_theorems+ −
+ −
lemma alpha5_rfv:+ −
"(t \<approx>5 s \<Longrightarrow> fv_rtrm5 t = fv_rtrm5 s)"+ −
"(l \<approx>l m \<Longrightarrow> (fv_rlts l = fv_rlts m \<and> fv_rbv5 l = fv_rbv5 m))"+ −
"(alpha_rbv5 b c \<Longrightarrow> fv_rbv5 b = fv_rbv5 c)"+ −
apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts)+ −
apply(simp_all)+ −
apply(simp add: alpha_gen)+ −
done+ −
+ −
lemma bv_list_rsp:+ −
shows "x \<approx>l y \<Longrightarrow> rbv5 x = rbv5 y"+ −
apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2))+ −
apply(simp_all)+ −
apply(clarify)+ −
apply simp+ −
done+ −
+ −
local_setup {* snd o Local_Theory.note ((@{binding alpha_dis}, []), (flat (map (distinct_rel @{context} @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases}) [(@{thms rtrm5.distinct}, @{term alpha_rtrm5}), (@{thms rlts.distinct}, @{term alpha_rlts}), (@{thms rlts.distinct}, @{term alpha_rbv5})]))) *}+ −
print_theorems+ −
+ −
local_setup {* snd o Local_Theory.note ((@{binding alpha_bn_rsp}, []), prove_alpha_bn_rsp [@{term alpha_rtrm5}, @{term alpha_rlts}] @{thms alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts} @{thms alpha5_inj alpha_dis} @{thms alpha5_equivp} @{context} (@{term alpha_rbv5}, 1)) *}+ −
thm alpha_bn_rsp+ −
+ −
+ −
lemma [quot_respect]:+ −
"(alpha_rlts ===> op =) fv_rlts fv_rlts"+ −
"(alpha_rlts ===> op =) fv_rbv5 fv_rbv5"+ −
"(alpha_rtrm5 ===> op =) fv_rtrm5 fv_rtrm5"+ −
"(alpha_rlts ===> op =) rbv5 rbv5"+ −
"(op = ===> alpha_rtrm5) rVr5 rVr5"+ −
"(alpha_rtrm5 ===> alpha_rtrm5 ===> alpha_rtrm5) rAp5 rAp5"+ −
"(alpha_rlts ===> alpha_rtrm5 ===> alpha_rtrm5) rLt5 rLt5"+ −
"(op = ===> alpha_rtrm5 ===> alpha_rlts ===> alpha_rlts) rLcons rLcons"+ −
"(op = ===> alpha_rtrm5 ===> alpha_rtrm5) permute permute"+ −
"(op = ===> alpha_rlts ===> alpha_rlts) permute permute"+ −
"(alpha_rlts ===> alpha_rlts ===> op =) alpha_rbv5 alpha_rbv5"+ −
apply (simp_all add: alpha5_inj alpha5_rfv alpha5_eqvt bv_list_rsp alpha5_reflp alpha_bn_rsp)+ −
apply (clarify)+ −
apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)+ −
done+ −
+ −
lemma+ −
shows "(alpha_rlts ===> op =) rbv5 rbv5"+ −
by (simp add: bv_list_rsp)+ −
+ −
lemmas trm5_lts_inducts = rtrm5_rlts.inducts[quot_lifted]+ −
+ −
instantiation trm5 and lts :: pt+ −
begin+ −
+ −
quotient_definition+ −
"permute_trm5 :: perm \<Rightarrow> trm5 \<Rightarrow> trm5"+ −
is+ −
"permute :: perm \<Rightarrow> rtrm5 \<Rightarrow> rtrm5"+ −
+ −
quotient_definition+ −
"permute_lts :: perm \<Rightarrow> lts \<Rightarrow> lts"+ −
is+ −
"permute :: perm \<Rightarrow> rlts \<Rightarrow> rlts"+ −
+ −
instance by default+ −
(simp_all add: permute_rtrm5_permute_rlts_zero[quot_lifted] permute_rtrm5_permute_rlts_append[quot_lifted])+ −
+ −
end+ −
+ −
lemmas permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted]+ −
lemmas bv5[simp] = rbv5.simps[quot_lifted]+ −
lemmas fv_trm5_bv5[simp] = fv_rtrm5_fv_rbv5.simps[quot_lifted]+ −
lemmas fv_lts[simp] = fv_rlts.simps[quot_lifted]+ −
lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]+ −
+ −
end+ −