theory QuotMain
imports QuotScript QuotList Prove
begin
locale QUOT_TYPE =
fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
and Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
and Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
assumes equiv: "EQUIV R"
and rep_prop: "\<And>y. \<exists>x. Rep y = R x"
and rep_inverse: "\<And>x. Abs (Rep x) = x"
and abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
begin
definition
"ABS x \<equiv> Abs (R x)"
definition
"REP a = Eps (Rep a)"
lemma lem9:
shows "R (Eps (R x)) = R x"
proof -
have a: "R x x" using equiv by (simp add: EQUIV_REFL_SYM_TRANS REFL_def)
then have "R x (Eps (R x))" by (rule someI)
then show "R (Eps (R x)) = R x"
using equiv unfolding EQUIV_def by simp
qed
theorem thm10:
shows "ABS (REP a) \<equiv> a"
apply (rule eq_reflection)
unfolding ABS_def REP_def
proof -
from rep_prop
obtain x where eq: "Rep a = R x" by auto
have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
also have "\<dots> = Abs (R x)" using lem9 by simp
also have "\<dots> = Abs (Rep a)" using eq by simp
also have "\<dots> = a" using rep_inverse by simp
finally
show "Abs (R (Eps (Rep a))) = a" by simp
qed
lemma REP_refl:
shows "R (REP a) (REP a)"
unfolding REP_def
by (simp add: equiv[simplified EQUIV_def])
lemma lem7:
shows "(R x = R y) = (Abs (R x) = Abs (R y))"
apply(rule iffI)
apply(simp)
apply(drule rep_inject[THEN iffD2])
apply(simp add: abs_inverse)
done
theorem thm11:
shows "R r r' = (ABS r = ABS r')"
unfolding ABS_def
by (simp only: equiv[simplified EQUIV_def] lem7)
lemma REP_ABS_rsp:
shows "R f (REP (ABS g)) = R f g"
and "R (REP (ABS g)) f = R g f"
by (simp_all add: thm10 thm11)
lemma QUOTIENT:
"QUOTIENT R ABS REP"
apply(unfold QUOTIENT_def)
apply(simp add: thm10)
apply(simp add: REP_refl)
apply(subst thm11[symmetric])
apply(simp add: equiv[simplified EQUIV_def])
done
lemma R_trans:
assumes ab: "R a b"
and bc: "R b c"
shows "R a c"
proof -
have tr: "TRANS R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
moreover have ab: "R a b" by fact
moreover have bc: "R b c" by fact
ultimately show "R a c" unfolding TRANS_def by blast
qed
lemma R_sym:
assumes ab: "R a b"
shows "R b a"
proof -
have re: "SYM R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
then show "R b a" using ab unfolding SYM_def by blast
qed
lemma R_trans2:
assumes ac: "R a c"
and bd: "R b d"
shows "R a b = R c d"
proof
assume "R a b"
then have "R b a" using R_sym by blast
then have "R b c" using ac R_trans by blast
then have "R c b" using R_sym by blast
then show "R c d" using bd R_trans by blast
next
assume "R c d"
then have "R a d" using ac R_trans by blast
then have "R d a" using R_sym by blast
then have "R b a" using bd R_trans by blast
then show "R a b" using R_sym by blast
qed
lemma REPS_same:
shows "R (REP a) (REP b) \<equiv> (a = b)"
apply (rule eq_reflection)
proof
assume as: "R (REP a) (REP b)"
from rep_prop
obtain x y
where eqs: "Rep a = R x" "Rep b = R y" by blast
from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp
then have "R x (Eps (R y))" using lem9 by simp
then have "R (Eps (R y)) x" using R_sym by blast
then have "R y x" using lem9 by simp
then have "R x y" using R_sym by blast
then have "ABS x = ABS y" using thm11 by simp
then have "Abs (Rep a) = Abs (Rep b)" using eqs unfolding ABS_def by simp
then show "a = b" using rep_inverse by simp
next
assume ab: "a = b"
have "REFL R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
then show "R (REP a) (REP b)" unfolding REFL_def using ab by auto
qed
end
section {* type definition for the quotient type *}
ML {*
(* constructs the term \<lambda>(c::ty \<Rightarrow> bool). \<exists>x. c = rel x *)
fun typedef_term rel ty lthy =
let
val [x, c] = [("x", ty), ("c", ty --> @{typ bool})]
|> Variable.variant_frees lthy [rel]
|> map Free
in
lambda c
(HOLogic.mk_exists
("x", ty, HOLogic.mk_eq (c, (rel $ x))))
end
*}
ML {*
(* makes the new type definitions and proves non-emptyness*)
fun typedef_make (qty_name, rel, ty) lthy =
let
val typedef_tac =
EVERY1 [rewrite_goal_tac @{thms mem_def},
rtac @{thm exI},
rtac @{thm exI},
rtac @{thm refl}]
in
LocalTheory.theory_result
(Typedef.add_typedef false NONE
(qty_name, map fst (Term.add_tfreesT ty []), NoSyn)
(typedef_term rel ty lthy)
NONE typedef_tac) lthy
end
*}
ML {*
(* proves the QUOT_TYPE theorem for the new type *)
fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) =
let
val rep_thm = #Rep typedef_info
val rep_inv = #Rep_inverse typedef_info
val abs_inv = #Abs_inverse typedef_info
val rep_inj = #Rep_inject typedef_info
val ss = HOL_basic_ss addsimps @{thms mem_def}
val rep_thm_simpd = Simplifier.asm_full_simplify ss rep_thm
val abs_inv_simpd = Simplifier.asm_full_simplify ss abs_inv
in
EVERY1 [rtac @{thm QUOT_TYPE.intro},
rtac equiv_thm,
rtac rep_thm_simpd,
rtac rep_inv,
rtac abs_inv_simpd, rtac @{thm exI}, rtac @{thm refl},
rtac rep_inj]
end
fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy =
let
val quot_type_const = Const (@{const_name "QUOT_TYPE"}, dummyT)
val goal = HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep)
|> Syntax.check_term lthy
in
Goal.prove lthy [] [] goal
(K (typedef_quot_type_tac equiv_thm typedef_info))
end
*}
ML {*
fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy =
let
val quotient_const = Const (@{const_name "QUOTIENT"}, dummyT)
val goal = HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep)
|> Syntax.check_term lthy
val typedef_quotient_thm_tac =
EVERY1 [K (rewrite_goals_tac [abs_def, rep_def]),
rtac @{thm QUOT_TYPE.QUOTIENT},
rtac quot_type_thm]
in
Goal.prove lthy [] [] goal
(K typedef_quotient_thm_tac)
end
*}
text {* two wrappers for define and note *}
ML {*
fun make_def (name, mx, rhs) lthy =
let
val ((rhs, (_ , thm)), lthy') =
LocalTheory.define Thm.internalK ((name, mx), (Attrib.empty_binding, rhs)) lthy
in
((rhs, thm), lthy')
end
*}
ML {*
fun note_thm (name, thm) lthy =
let
val ((_,[thm']), lthy') = LocalTheory.note Thm.theoremK ((name, []), [thm]) lthy
in
(thm', lthy')
end
*}
ML {*
val no_vars = Thm.rule_attribute (fn context => fn th =>
let
val ctxt = Variable.set_body false (Context.proof_of context);
val ((_, [th']), _) = Variable.import true [th] ctxt;
in th' end);
*}
ML {*
fun typedef_main (qty_name, rel, ty, equiv_thm) lthy =
let
(* generates typedef *)
val ((_, typedef_info), lthy1) = typedef_make (qty_name, rel, ty) lthy
(* abs and rep functions *)
val abs_ty = #abs_type typedef_info
val rep_ty = #rep_type typedef_info
val abs_name = #Abs_name typedef_info
val rep_name = #Rep_name typedef_info
val abs = Const (abs_name, rep_ty --> abs_ty)
val rep = Const (rep_name, abs_ty --> rep_ty)
(* ABS and REP definitions *)
val ABS_const = Const (@{const_name "QUOT_TYPE.ABS"}, dummyT )
val REP_const = Const (@{const_name "QUOT_TYPE.REP"}, dummyT )
val ABS_trm = Syntax.check_term lthy1 (ABS_const $ rel $ abs)
val REP_trm = Syntax.check_term lthy1 (REP_const $ rep)
val ABS_name = Binding.prefix_name "ABS_" qty_name
val REP_name = Binding.prefix_name "REP_" qty_name
val (((ABS, ABS_def), (REP, REP_def)), lthy2) =
lthy1 |> make_def (ABS_name, NoSyn, ABS_trm)
||>> make_def (REP_name, NoSyn, REP_trm)
(* quot_type theorem *)
val quot_thm = typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy2
val quot_thm_name = Binding.prefix_name "QUOT_TYPE_" qty_name
(* quotient theorem *)
val quotient_thm = typedef_quotient_thm (rel, ABS, REP, ABS_def, REP_def, quot_thm) lthy2
val quotient_thm_name = Binding.prefix_name "QUOTIENT_" qty_name
(* interpretation *)
val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
val ((_, [eqn1pre]), lthy3) = Variable.import true [ABS_def] lthy2;
val eqn1i = Thm.prop_of (symmetric eqn1pre)
val ((_, [eqn2pre]), lthy4) = Variable.import true [REP_def] lthy3;
val eqn2i = Thm.prop_of (symmetric eqn2pre)
val exp_morphism = ProofContext.export_morphism lthy4 (ProofContext.init (ProofContext.theory_of lthy4));
val exp_term = Morphism.term exp_morphism;
val exp = Morphism.thm exp_morphism;
val mthd = Method.SIMPLE_METHOD ((rtac quot_thm 1) THEN
ALLGOALS (simp_tac (HOL_basic_ss addsimps [(symmetric (exp ABS_def)), (symmetric (exp REP_def))])))
val mthdt = Method.Basic (fn _ => mthd)
val bymt = Proof.global_terminal_proof (mthdt, NONE)
val exp_i = [(@{const_name QUOT_TYPE}, ((("QUOT_TYPE_I_" ^ (Binding.name_of qty_name)), true),
Expression.Named [
("R", rel),
("Abs", abs),
("Rep", rep)
]))]
in
lthy4
|> note_thm (quot_thm_name, quot_thm)
||>> note_thm (quotient_thm_name, quotient_thm)
||> LocalTheory.theory (fn thy =>
let
val global_eqns = map exp_term [eqn2i, eqn1i];
(* Not sure if the following context should not be used *)
val (global_eqns2, lthy5) = Variable.import_terms true global_eqns lthy4;
val global_eqns3 = map (fn t => (bindd, t)) global_eqns2;
in ProofContext.theory_of (bymt (Expression.interpretation (exp_i, []) global_eqns3 thy)) end)
end
*}
section {* various tests for quotient types*}
datatype trm =
var "nat"
| app "trm" "trm"
| lam "nat" "trm"
axiomatization
RR :: "trm \<Rightarrow> trm \<Rightarrow> bool"
where
r_eq: "EQUIV RR"
local_setup {*
typedef_main (@{binding "qtrm"}, @{term "RR"}, @{typ trm}, @{thm r_eq}) #> snd
*}
term Rep_qtrm
term REP_qtrm
term Abs_qtrm
term ABS_qtrm
thm QUOT_TYPE_qtrm
thm QUOTIENT_qtrm
(* Test interpretation *)
thm QUOT_TYPE_I_qtrm.thm11
thm QUOT_TYPE.thm11
print_theorems
thm Rep_qtrm
text {* another test *}
datatype 'a trm' =
var' "'a"
| app' "'a trm'" "'a trm'"
| lam' "'a" "'a trm'"
consts R' :: "'a trm' \<Rightarrow> 'a trm' \<Rightarrow> bool"
axioms r_eq': "EQUIV R'"
local_setup {*
typedef_main (@{binding "qtrm'"}, @{term "R'"}, @{typ "'a trm'"}, @{thm r_eq'}) #> snd
*}
print_theorems
term ABS_qtrm'
term REP_qtrm'
thm QUOT_TYPE_qtrm'
thm QUOTIENT_qtrm'
thm Rep_qtrm'
text {* a test with lists of terms *}
datatype t =
vr "string"
| ap "t list"
| lm "string" "t"
consts Rt :: "t \<Rightarrow> t \<Rightarrow> bool"
axioms t_eq: "EQUIV Rt"
local_setup {*
typedef_main (@{binding "qt"}, @{term "Rt"}, @{typ "t"}, @{thm t_eq}) #> snd
*}
section {* lifting of constants *}
text {* information about map-functions for type-constructor *}
ML {*
type typ_info = {mapfun: string}
local
structure Data = GenericDataFun
(type T = typ_info Symtab.table
val empty = Symtab.empty
val extend = I
fun merge _ = Symtab.merge (K true))
in
val lookup = Symtab.lookup o Data.get
fun update k v = Data.map (Symtab.update (k, v))
end
*}
(* mapfuns for some standard types *)
setup {*
Context.theory_map (update @{type_name "list"} {mapfun = @{const_name "map"}})
#> Context.theory_map (update @{type_name "*"} {mapfun = @{const_name "prod_fun"}})
#> Context.theory_map (update @{type_name "fun"} {mapfun = @{const_name "fun_map"}})
*}
ML {* lookup (Context.Proof @{context}) @{type_name list} *}
ML {*
datatype abs_or_rep = abs | rep
fun get_fun abs_or_rep rty qty lthy ty =
let
val qty_name = Long_Name.base_name (fst (dest_Type qty))
fun get_fun_aux s fs_tys =
let
val (fs, tys) = split_list fs_tys
val (otys, ntys) = split_list tys
val oty = Type (s, otys)
val nty = Type (s, ntys)
val ftys = map (op -->) tys
in
(case (lookup (Context.Proof lthy) s) of
SOME info => (list_comb (Const (#mapfun info, ftys ---> oty --> nty), fs), (oty, nty))
| NONE => raise ERROR ("no map association for type " ^ s))
end
fun get_const abs = (Const ("QuotMain.ABS_" ^ qty_name, rty --> qty), (rty, qty))
| get_const rep = (Const ("QuotMain.REP_" ^ qty_name, qty --> rty), (qty, rty))
in
if ty = qty
then (get_const abs_or_rep)
else (case ty of
TFree _ => (Abs ("x", ty, Bound 0), (ty, ty))
| Type (_, []) => (Abs ("x", ty, Bound 0), (ty, ty))
| Type (s, tys) => get_fun_aux s (map (get_fun abs_or_rep rty qty lthy) tys)
| _ => raise ERROR ("no variables")
)
end
*}
ML {*
get_fun rep @{typ t} @{typ qt} @{context} @{typ "t * nat"}
|> fst
|> Syntax.string_of_term @{context}
|> writeln
*}
ML {*
fun get_const_def nconst oconst rty qty lthy =
let
val ty = fastype_of nconst
val (arg_tys, res_ty) = strip_type ty
val fresh_args = arg_tys |> map (pair "x")
|> Variable.variant_frees lthy [nconst, oconst]
|> map Free
val rep_fns = map (fst o get_fun rep rty qty lthy) arg_tys
val abs_fn = (fst o get_fun abs rty qty lthy) res_ty
in
map (op $) (rep_fns ~~ fresh_args)
|> curry list_comb oconst
|> curry (op $) abs_fn
|> fold_rev lambda fresh_args
end
*}
ML {*
fun exchange_ty rty qty ty =
if ty = rty then qty
else
(case ty of
Type (s, tys) => Type (s, map (exchange_ty rty qty) tys)
| _ => ty)
*}
ML {*
fun make_const_def nconst_bname oconst mx rty qty lthy =
let
val oconst_ty = fastype_of oconst
val nconst_ty = exchange_ty rty qty oconst_ty
val nconst = Const (Binding.name_of nconst_bname, nconst_ty)
val def_trm = get_const_def nconst oconst rty qty lthy
in
make_def (nconst_bname, mx, def_trm) lthy
end
*}
local_setup {*
make_const_def @{binding VR} @{term "vr"} NoSyn @{typ "t"} @{typ "qt"} #> snd
*}
local_setup {*
make_const_def @{binding AP} @{term "ap"} NoSyn @{typ "t"} @{typ "qt"} #> snd
*}
local_setup {*
make_const_def @{binding LM} @{term "lm"} NoSyn @{typ "t"} @{typ "qt"} #> snd
*}
thm VR_def
thm AP_def
thm LM_def
term LM
term VR
term AP
text {* a test with functions *}
datatype 'a t' =
vr' "string"
| ap' "('a t') * ('a t')"
| lm' "'a" "string \<Rightarrow> ('a t')"
consts Rt' :: "('a t') \<Rightarrow> ('a t') \<Rightarrow> bool"
axioms t_eq': "EQUIV Rt'"
local_setup {*
typedef_main (@{binding "qt'"}, @{term "Rt'"}, @{typ "'a t'"}, @{thm t_eq'}) #> snd
*}
print_theorems
local_setup {*
make_const_def @{binding VR'} @{term "vr'"} NoSyn @{typ "'a t'"} @{typ "'a qt'"} #> snd
*}
local_setup {*
make_const_def @{binding AP'} @{term "ap'"} NoSyn @{typ "'a t'"} @{typ "'a qt'"} #> snd
*}
local_setup {*
make_const_def @{binding LM'} @{term "lm'"} NoSyn @{typ "'a t'"} @{typ "'a qt'"} #> snd
*}
thm VR'_def
thm AP'_def
thm LM'_def
term LM'
term VR'
term AP'
text {* finite set example *}
print_syntax
inductive
list_eq (infix "\<approx>" 50)
where
"a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"
lemma list_eq_sym:
shows "xs \<approx> xs"
apply (induct xs)
apply (auto intro: list_eq.intros)
done
lemma equiv_list_eq:
shows "EQUIV list_eq"
unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
apply(auto intro: list_eq.intros list_eq_sym)
done
local_setup {*
typedef_main (@{binding "fset"}, @{term "list_eq"}, @{typ "'a list"}, @{thm "equiv_list_eq"}) #> snd
*}
print_theorems
typ "'a fset"
thm "Rep_fset"
local_setup {*
make_const_def @{binding EMPTY} @{term "[]"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term Nil
term EMPTY
thm EMPTY_def
local_setup {*
make_const_def @{binding INSERT} @{term "op #"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term Cons
term INSERT
thm INSERT_def
local_setup {*
make_const_def @{binding UNION} @{term "op @"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term append
term UNION
thm UNION_def
thm QUOTIENT_fset
thm QUOT_TYPE_I_fset.thm11
fun
membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"
lemma mem_respects:
fixes z
assumes a: "list_eq x y"
shows "(z memb x) = (z memb y)"
using a by induct auto
fun
card1 :: "'a list \<Rightarrow> nat"
where
card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"
local_setup {*
make_const_def @{binding card} @{term "card1"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term card1
term card
thm card_def
(* text {*
Maybe make_const_def should require a theorem that says that the particular lifted function
respects the relation. With it such a definition would be impossible:
make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*} *)
lemma card1_rsp:
fixes a b :: "'a list"
assumes e: "a \<approx> b"
shows "card1 a = card1 b"
using e apply induct
apply (simp_all add:mem_respects)
done
lemma card1_0:
fixes a :: "'a list"
shows "(card1 a = 0) = (a = [])"
apply (induct a)
apply (simp)
apply (simp_all)
apply meson
apply (simp_all)
done
lemma not_mem_card1:
fixes x :: "'a"
fixes xs :: "'a list"
shows "~(x memb xs) \<Longrightarrow> card1 (x # xs) = Suc (card1 xs)"
by simp
lemma mem_cons:
fixes x :: "'a"
fixes xs :: "'a list"
assumes a : "x memb xs"
shows "x # xs \<approx> xs"
using a apply (induct xs)
apply (simp_all)
apply (meson)
apply (simp_all add: list_eq.intros(4))
proof -
fix a :: "'a"
fix xs :: "'a list"
assume a1 : "x # xs \<approx> xs"
assume a2 : "x memb xs"
have a3 : "x # a # xs \<approx> a # x # xs" using list_eq.intros(1)[of "x"] by blast
have a4 : "a # x # xs \<approx> a # xs" using a1 list_eq.intros(5)[of "x # xs" "xs"] by simp
then show "x # a # xs \<approx> a # xs" using a3 list_eq.intros(6) by blast
qed
lemma card1_suc:
fixes xs :: "'a list"
fixes n :: "nat"
assumes c: "card1 xs = Suc n"
shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
using c apply (induct xs)
apply (simp)
(* apply (rule allI)*)
proof -
fix a :: "'a"
fix xs :: "'a list"
fix n :: "nat"
assume a1: "card1 xs = Suc n \<Longrightarrow> \<exists>a ys. \<not> a memb ys \<and> xs \<approx> a # ys"
assume a2: "card1 (a # xs) = Suc n"
from a1 a2 show "\<exists>aa ys. \<not> aa memb ys \<and> a # xs \<approx> aa # ys"
apply -
apply (rule True_or_False [of "a memb xs", THEN disjE])
apply (simp_all add: card1_cons if_True simp_thms)
proof -
assume a1: "\<exists>a ys. \<not> a memb ys \<and> xs \<approx> a # ys"
assume a2: "card1 xs = Suc n"
assume a3: "a memb xs"
from a1 obtain b ys where a5: "\<not> b memb ys \<and> xs \<approx> b # ys" by blast
from a2 a3 a5 show "\<exists>aa ys. \<not> aa memb ys \<and> a # xs \<approx> aa # ys"
apply -
apply (rule_tac x = "b" in exI)
apply (rule_tac x = "ys" in exI)
apply (simp_all)
proof -
assume a1: "a memb xs"
assume a2: "\<not> b memb ys \<and> xs \<approx> b # ys"
then have a3: "xs \<approx> b # ys" by simp
have "a # xs \<approx> xs" using a1 mem_cons[of "a" "xs"] by simp
then show "a # xs \<approx> b # ys" using a3 list_eq.intros(6) by blast
qed
next
assume a2: "\<not> a memb xs"
from a2 show "\<exists>aa ys. \<not> aa memb ys \<and> a # xs \<approx> aa # ys"
apply -
apply (rule_tac x = "a" in exI)
apply (rule_tac x = "xs" in exI)
apply (simp)
apply (rule list_eq_sym)
done
qed
qed
lemma cons_preserves:
fixes z
assumes a: "xs \<approx> ys"
shows "(z # xs) \<approx> (z # ys)"
using a by (rule QuotMain.list_eq.intros(5))
text {*
unlam_def converts a definition theorem given as 'a = \lambda x. \lambda y. f (x y)'
to a theorem 'a x y = f (x, y)'. These are needed to rewrite right-to-left.
*}
ML {*
fun unlam_def_aux orig_ctxt ctxt t =
let val rhs = Thm.rhs_of t in
(case try (Thm.dest_abs NONE) rhs of
SOME (v, vt) =>
let
val (vname, vt) = Term.dest_Free (Thm.term_of v)
val ([vnname], ctxt) = Variable.variant_fixes [vname] ctxt
val nv = Free(vnname, vt)
val t2 = Drule.fun_cong_rule t (Thm.cterm_of (ProofContext.theory_of ctxt) nv)
val tnorm = equal_elim (Drule.beta_eta_conversion (Thm.cprop_of t2)) t2
in unlam_def_aux orig_ctxt ctxt tnorm end
| NONE => singleton (ProofContext.export ctxt orig_ctxt) t)
end;
fun unlam_def ctxt t = unlam_def_aux ctxt ctxt t
*}
local_setup {*
make_const_def @{binding IN} @{term "membship"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term membship
term IN
thm IN_def
ML {* unlam_def @{context} @{thm IN_def} *}
lemmas a = QUOT_TYPE.ABS_def[OF QUOT_TYPE_fset]
thm QUOT_TYPE.thm11[OF QUOT_TYPE_fset, THEN iffD1, simplified a]
lemma yy:
shows "(False = x memb []) = (False = IN (x::nat) EMPTY)"
unfolding IN_def EMPTY_def
apply(rule_tac f="(op =) False" in arg_cong)
apply(rule mem_respects)
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
apply(rule list_eq.intros)
done
lemma
shows "IN (x::nat) EMPTY = False"
using m1
apply -
apply(rule yy[THEN iffD1, symmetric])
apply(simp)
done
lemma
shows "((x=y) \<or> (IN x xs) = (IN (x::nat) (INSERT y xs))) =
((x=y) \<or> x memb REP_fset xs = x memb (y # REP_fset xs))"
unfolding IN_def INSERT_def
apply(rule_tac f="(op \<or>) (x=y)" in arg_cong)
apply(rule_tac f="(op =) (x memb REP_fset xs)" in arg_cong)
apply(rule mem_respects)
apply(rule list_eq.intros(3))
apply(unfold REP_fset_def ABS_fset_def)
apply(simp only: QUOT_TYPE.REP_ABS_rsp[OF QUOT_TYPE_fset])
apply(rule list_eq_sym)
done
lemma append_respects_fst:
assumes a : "list_eq l1 l2"
shows "list_eq (l1 @ s) (l2 @ s)"
using a
apply(induct)
apply(auto intro: list_eq.intros)
apply(simp add: list_eq_sym)
done
lemma yyy:
shows "
(
(UNION EMPTY s = s) &
((UNION (INSERT e s1) s2) = (INSERT e (UNION s1 s2)))
) = (
((ABS_fset ([] @ REP_fset s)) = s) &
((ABS_fset ((e # (REP_fset s1)) @ REP_fset s2)) = ABS_fset (e # (REP_fset s1 @ REP_fset s2)))
)"
unfolding UNION_def EMPTY_def INSERT_def
apply(rule_tac f="(op &)" in arg_cong2)
apply(rule_tac f="(op =)" in arg_cong2)
apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
apply(rule append_respects_fst)
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
apply(rule list_eq_sym)
apply(simp)
apply(rule_tac f="(op =)" in arg_cong2)
apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
apply(rule append_respects_fst)
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
apply(rule list_eq_sym)
apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
apply(rule list_eq.intros(5))
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
apply(rule list_eq_sym)
done
lemma
shows "
(UNION EMPTY s = s) &
((UNION (INSERT e s1) s2) = (INSERT e (UNION s1 s2)))"
apply (simp add: yyy)
apply (simp add: QUOT_TYPE_I_fset.thm10)
done
ML {*
fun mk_rep_abs x = @{term REP_fset} $ (@{term ABS_fset} $ x)
val consts = [@{const_name "Nil"}, @{const_name "append"}, @{const_name "Cons"}, @{const_name "membship"}, @{const_name "card1"}]
*}
ML lambda
ML {*
fun build_goal thm constructors lifted_type mk_rep_abs =
let
fun is_const (Const (x, t)) = x mem constructors
| is_const _ = false
fun maybe_mk_rep_abs t =
let
val _ = writeln ("Maybe: " ^ Syntax.string_of_term @{context} t)
in
if type_of t = lifted_type then mk_rep_abs t else t
end
(* handle TYPE _ => t*)
fun build_aux (Abs (s, t, tr)) =
let
val [(fresh_s, _)] = Variable.variant_frees @{context} [] [(s, ())];
val newv = Free (fresh_s, t);
val str = subst_bound (newv, tr);
val rec_term = build_aux str;
val bound_term = lambda newv rec_term
in
bound_term
end
| build_aux (f $ a) =
let
val (f, args) = strip_comb (f $ a)
val _ = writeln (Syntax.string_of_term @{context} f)
in
(if is_const f then maybe_mk_rep_abs (list_comb (f, (map maybe_mk_rep_abs (map build_aux args))))
else list_comb ((build_aux f), (map build_aux args)))
end
| build_aux x =
if is_const x then maybe_mk_rep_abs x else x
val concl2 = term_of (#prop (crep_thm thm))
in
Logic.mk_equals ((build_aux concl2), concl2)
end *}
ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def} *}
ML {* val fset_defs_sym = map (fn t => symmetric (unlam_def @{context} t)) fset_defs *}
ML {*
fun dest_cbinop t =
let
val (t2, rhs) = Thm.dest_comb t;
val (bop, lhs) = Thm.dest_comb t2;
in
(bop, (lhs, rhs))
end
*}
ML {*
fun dest_ceq t =
let
val (bop, pair) = dest_cbinop t;
val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
in
if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
end
*}
ML Thm.instantiate
ML {*@{thm arg_cong2}*}
ML {*@{thm arg_cong2[of _ _ _ _ "op ="]} *}
ML {* val cT = @{cpat "op ="} |> Thm.ctyp_of_term |> Thm.dest_ctyp |> hd *}
ML {*
Toplevel.program (fn () =>
Drule.instantiate' [SOME cT, SOME cT, SOME @{ctyp bool}] [NONE, NONE, NONE, NONE, SOME (@{cpat "op ="})] @{thm arg_cong2}
)
*}
ML {*
fun split_binop_conv t =
let
val _ = tracing (Syntax.string_of_term @{context} (term_of t))
val (lhs, rhs) = dest_ceq t;
val (bop, _) = dest_cbinop lhs;
val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
val [cmT, crT] = Thm.dest_ctyp cr2;
in
Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
end
*}
ML {*
fun split_arg_conv t =
let
val (lhs, rhs) = dest_ceq t;
val (lop, larg) = Thm.dest_comb lhs;
val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
in
Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
end
*}
ML {*
fun split_binop_tac n thm =
let
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
val rewr = split_binop_conv cconcl;
in
rtac rewr n thm
end
handle CTERM _ => Seq.empty
*}
ML {*
fun split_arg_tac n thm =
let
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
val rewr = split_arg_conv cconcl;
in
rtac rewr n thm
end
handle CTERM _ => Seq.empty
*}
(* Has all the theorems about fset plugged in. These should be parameters to the tactic *)
lemma trueprop_cong:
shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
by auto
ML {*
fun foo_tac' ctxt =
REPEAT_ALL_NEW (FIRST' [
rtac @{thm trueprop_cong},
rtac @{thm list_eq_sym},
rtac @{thm cons_preserves},
rtac @{thm mem_respects},
rtac @{thm card1_rsp},
rtac @{thm QUOT_TYPE_I_fset.R_trans2},
CHANGED o (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms QUOT_TYPE_I_fset.REP_ABS_rsp})),
DatatypeAux.cong_tac,
rtac @{thm ext},
(* rtac @{thm eq_reflection}*)
CHANGED o (ObjectLogic.full_atomize_tac)
])
*}
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m1}))
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
(*notation ( output) "prop" ("#_" [1000] 1000) *)
notation ( output) "Trueprop" ("#_" [1000] 1000)
prove {* (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
done
thm length_append (* Not true but worth checking that the goal is correct *)
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm length_append}))
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
prove {* Thm.term_of cgoal2 *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
sorry
thm m2
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m2}))
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
prove {* Thm.term_of cgoal2 *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
done
thm list_eq.intros(4)
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list_eq.intros(4)}))
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
val cgoal3 = Thm.rhs_of (MetaSimplifier.rewrite true @{thms QUOT_TYPE_I_fset.thm10} cgoal2)
*}
(* It is the same, but we need a name for it. *)
prove {* Thm.term_of cgoal3 *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
done
lemma zzz :
"Trueprop (REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx> REP_fset (INSERT a (ABS_fset xs)))
\<equiv> Trueprop (a # a # xs \<approx> a # xs)"
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
done
lemma zzz' :
"(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx> REP_fset (INSERT a (ABS_fset xs)))"
using list_eq.intros(4) by (simp only: zzz)
thm QUOT_TYPE_I_fset.REPS_same
ML {* val zzz'' = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} @{thm zzz'} *}
thm list_eq.intros(5)
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list_eq.intros(5)}))
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
*}
ML {*
val cgoal =
Toplevel.program (fn () =>
cterm_of @{theory} goal
)
*}
ML {*
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
*}
prove {* Thm.term_of cgoal2 *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
done
thm list.induct
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list.induct}))
*}
ML {*
val goal =
Toplevel.program (fn () =>
build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
)
*}
ML {*
val cgoal = cterm_of @{theory} goal
*}
ML {*
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
*}
prove {* (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
sorry
ML {*
fun lift_theorem_fset_aux thm lthy =
let
val ((_, [novars]), lthy2) = Variable.import true [thm] lthy;
val goal = build_goal novars consts @{typ "'a list"} mk_rep_abs;
val cgoal = cterm_of @{theory} goal;
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal);
val tac = (LocalDefs.unfold_tac @{context} fset_defs) THEN (foo_tac' @{context}) 1;
val cthm = Goal.prove_internal [] cgoal2 (fn _ => tac);
val nthm = MetaSimplifier.rewrite_rule [symmetric cthm] (snd (no_vars (Context.Theory @{theory}, thm)))
val nthm2 = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same QUOT_TYPE_I_fset.thm10} nthm;
val [nthm3] = ProofContext.export lthy2 lthy [nthm2]
in
nthm3
end
*}
ML {* lift_theorem_fset_aux @{thm m1} @{context} *}
ML {*
fun lift_theorem_fset name thm lthy =
let
val lifted_thm = lift_theorem_fset_aux thm lthy;
val (_, lthy2) = note_thm (name, lifted_thm) lthy;
in
lthy2
end;
*}
local_setup {* lift_theorem_fset @{binding "m1_lift"} @{thm m1} *}
local_setup {* lift_theorem_fset @{binding "leqi4_lift"} @{thm list_eq.intros(4)} *}
local_setup {* lift_theorem_fset @{binding "leqi5_lift"} @{thm list_eq.intros(5)} *}
local_setup {* lift_theorem_fset @{binding "m2_lift"} @{thm m2} *}
thm m1_lift
thm leqi4_lift
thm leqi5_lift
thm m2_lift
ML Drule.instantiate'
text {*
We lost the schematic variable again :(.
Another variable export will still be necessary...
*}
ML {*
Toplevel.program (fn () =>
MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
Drule.instantiate' [] [NONE, NONE, SOME (@{cpat "REP_fset x"})] @{thm m2_lift}
)
)
*}
thm leqi4_lift
ML {*
val (nam, typ) = (hd (Term.add_vars (term_of (#prop (crep_thm @{thm leqi4_lift}))) []))
val (_, l) = dest_Type typ
val t = Type ("QuotMain.fset", l)
val v = Var (nam, t)
val cv = cterm_of @{theory} ((term_of @{cpat "REP_fset"}) $ v)
*}
ML {*
term_of (#prop (crep_thm @{thm sym}))
*}
ML {*
Toplevel.program (fn () =>
MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
Drule.instantiate' [] [NONE, SOME (cv)] @{thm leqi4_lift}
)
)
*}
ML {* MRS *}
thm card1_suc
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm card1_suc}))
*}
ML {*
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
*}
ML {*
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
*}
ML {* @{term "\<exists>x. P x"} *}
ML {* Thm.bicompose *}
prove {* (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
(*
datatype obj1 =
OVAR1 "string"
| OBJ1 "(string * (string \<Rightarrow> obj1)) list"
| INVOKE1 "obj1 \<Rightarrow> string"
| UPDATE1 "obj1 \<Rightarrow> string \<Rightarrow> (string \<Rightarrow> obj1)"
*)