rsp for bv; the only issue is that it requires an appropriate induction principle.
theory Rsp
imports Abs
begin
ML {*
fun define_quotient_type args tac ctxt =
let
val mthd = Method.SIMPLE_METHOD tac
val mthdt = Method.Basic (fn _ => mthd)
val bymt = Proof.global_terminal_proof (mthdt, NONE)
in
bymt (Quotient_Type.quotient_type args ctxt)
end
*}
ML {*
fun const_rsp lthy const =
let
val nty = fastype_of (Quotient_Term.quotient_lift_const ("", const) lthy)
val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);
in
HOLogic.mk_Trueprop (rel $ const $ const)
end
*}
(* Replaces bounds by frees and meta implications by implications *)
ML {*
fun prepare_goal trm =
let
val vars = strip_all_vars trm
val fs = rev (map Free vars)
val (fixes, no_alls) = ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
val prems = map HOLogic.dest_Trueprop (Logic.strip_imp_prems no_alls)
val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl no_alls)
in
(fixes, fold (curry HOLogic.mk_imp) prems concl)
end
*}
ML {*
fun get_rsp_goal thy trm =
let
val goalstate = Goal.init (cterm_of thy trm);
val tac = REPEAT o rtac @{thm fun_rel_id};
in
case (SINGLE (tac 1) goalstate) of
NONE => error "rsp_goal failed"
| SOME th => prepare_goal (term_of (cprem_of th 1))
end
*}
ML {*
fun repeat_mp thm = repeat_mp (mp OF [thm]) handle THM _ => thm
*}
ML {*
fun prove_const_rsp bind consts tac ctxt =
let
val rsp_goals = map (const_rsp ctxt) consts
val thy = ProofContext.theory_of ctxt
val (fixed, user_goals) = split_list (map (get_rsp_goal thy) rsp_goals)
val fixed' = distinct (op =) (flat fixed)
val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
val user_thm = Goal.prove ctxt fixed' [] user_goal tac
val user_thms = map repeat_mp (HOLogic.conj_elims user_thm)
fun tac _ = (REPEAT o rtac @{thm fun_rel_id} THEN' resolve_tac user_thms THEN_ALL_NEW atac) 1
val rsp_thms = map (fn gl => Goal.prove ctxt [] [] gl tac) rsp_goals
in
ctxt
|> snd o Local_Theory.note
((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), rsp_thms)
|> snd o Local_Theory.note ((bind, []), user_thms)
end
*}
ML {*
fun fvbv_rsp_tac induct fvbv_simps =
((((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
(TRY o rtac @{thm TrueI})) THEN_ALL_NEW asm_full_simp_tac
(HOL_ss addsimps (@{thm alpha_gen} :: fvbv_simps)))
*}
ML {*
fun constr_rsp_tac inj rsp equivps =
let
val reflps = map (fn x => @{thm equivp_reflp} OF [x]) equivps
in
REPEAT o rtac impI THEN'
simp_tac (HOL_ss addsimps inj) THEN'
(TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)) THEN_ALL_NEW
(asm_simp_tac HOL_ss THEN_ALL_NEW (
rtac @{thm exI[of _ "0 :: perm"]} THEN'
asm_full_simp_tac (HOL_ss addsimps (rsp @ reflps @
@{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv}))
))
end
*}
(* Testing code
local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} [@{term rbv2}]
(fn _ => fv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms fv_rtrm2_fv_rassign.simps} 1) *}*)
(*ML {*
val rsp_goals = map (const_rsp @{context}) [@{term rbv2}]
val (fixed, user_goals) = split_list (map (get_rsp_goal @{theory}) rsp_goals)
val fixed' = distinct (op =) (flat fixed)
val user_goal = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj user_goals)
*}
prove ug: {* user_goal *}
ML_prf {*
val induct = @{thm alpha_rtrm2_alpha_rassign.inducts(2)}
val fv_simps = @{thms rbv2.simps}
*}
*)
end