update to 'termination (eqvt)'.
header {* CPS conversion *}
theory CPS1_Plotkin
imports Lt
begin
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[as]lst. x = [bs]lst. y"
and fcb1: "(set as) \<sharp>* c \<Longrightarrow> (set as) \<sharp>* f as x c"
and fresh1: "set as \<sharp>* c"
and fresh2: "set bs \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
by (auto intro: supports_finite simp add: finite_supp)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* Abs_lst as x" and
inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
also have "\<dots> = Abs_lst as x"
by (simp only: fr2 perm_supp_eq)
finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> as = r \<bullet> bs" and
qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
apply(blast)
done
have "(set as) \<sharp>* f as x c"
apply(rule fcb1)
apply(rule fresh1)
done
then have "q \<bullet> ((set as) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
have "f as x c = q \<bullet> (f as x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
also have "\<dots> = r \<bullet> (f bs y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
also have "... = f bs y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
lemma Abs_lst1_fcb2:
fixes a b :: "atom"
and x y :: "'b :: fs"
and c::"'c :: fs"
assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
and fcb1: "a \<sharp> c \<Longrightarrow> a \<sharp> f a x c"
and fresh: "{a, b} \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
shows "f a x c = f b y c"
using e
apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
apply(simp_all)
using fcb1 fresh perm1 perm2
apply(simp_all add: fresh_star_def)
done
nominal_primrec
CPS :: "lt \<Rightarrow> lt" ("_*" [250] 250)
where
"atom k \<sharp> x \<Longrightarrow> (x~)* = (Abs k ((k~) $ (x~)))"
| "atom k \<sharp> (x, M) \<Longrightarrow> (Abs x M)* = Abs k (k~ $ Abs x (M*))"
| "atom k \<sharp> (M, N) \<Longrightarrow> atom m \<sharp> (N, k) \<Longrightarrow> atom n \<sharp> (k, m) \<Longrightarrow>
(M $ N)* = Abs k (M* $ Abs m (N* $ Abs n (m~ $ n~ $ k~)))"
unfolding eqvt_def CPS_graph_def
apply (rule, perm_simp, rule, rule)
apply (simp_all add: fresh_Pair_elim)
apply (rule_tac y="x" in lt.exhaust)
apply (auto)
apply (rule_tac x="name" and ?'a="name" in obtain_fresh)
apply (simp_all add: fresh_at_base)[3]
apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
apply (simp add: fresh_Pair_elim fresh_at_base)[2]
apply (rule_tac x="(lt1, lt2)" and ?'a="name" in obtain_fresh)
apply (rule_tac x="(lt2, a)" and ?'a="name" in obtain_fresh)
apply (rule_tac x="(a, aa)" and ?'a="name" in obtain_fresh)
apply (simp add: fresh_Pair_elim fresh_at_base)
apply (simp add: Abs1_eq_iff lt.fresh fresh_at_base)
--"-"
apply(rule_tac s="[[atom ka]]lst. ka~ $ Abs x (CPS_sumC M)" in trans)
apply (case_tac "k = ka")
apply simp
apply(simp (no_asm) add: Abs1_eq_iff del:eqvts)
apply (simp del: eqvts add: lt.fresh fresh_at_base)
apply (simp only: lt.perm_simps(1) lt.perm_simps(3) flip_def[symmetric] lt.eq_iff(3))
apply (subst flip_at_base_simps(2))
apply simp
apply (intro conjI refl)
apply (rule flip_fresh_fresh[symmetric])
apply (simp_all add: lt.fresh)
apply (metis fresh_eqvt_at lt.fsupp)
apply (case_tac "ka = x")
apply simp_all[2]
apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp)
apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp)
--"-"
apply (simp add: Abs1_eq(3))
apply (erule Abs_lst1_fcb2)
apply (simp_all add: Abs_fresh_iff fresh_Nil fresh_star_def eqvt_at_def)[4]
--"-"
apply (rename_tac k' M N m' n')
apply (subgoal_tac "atom k \<sharp> CPS_sumC M \<and> atom k' \<sharp> CPS_sumC M \<and> atom k \<sharp> CPS_sumC N \<and> atom k' \<sharp> CPS_sumC N \<and>
atom m \<sharp> CPS_sumC N \<and> atom m' \<sharp> CPS_sumC N")
prefer 2
apply (intro conjI)
apply (erule fresh_eqvt_at, simp add: finite_supp, assumption)+
apply clarify
apply (case_tac "k = k'", case_tac [!] "m' = k",case_tac [!]"m = k'",case_tac[!] "m = m'")
apply (simp_all add: Abs1_eq_iff lt.fresh flip_def[symmetric] fresh_at_base flip_fresh_fresh permute_eq_iff)
by (metis flip_at_base_simps(3) flip_at_simps(2) flip_commute permute_flip_at)+
termination (eqvt) by (relation "measure size") (simp_all)
lemmas [simp] = fresh_Pair_elim CPS.simps(2,3)[simplified fresh_Pair_elim]
lemma [simp]: "supp (M*) = supp M"
by (induct rule: CPS.induct, simp_all add: lt.supp supp_at_base fresh_at_base fresh_def supp_Pair)
(simp_all only: atom_eq_iff[symmetric], blast+)
lemma [simp]: "x \<sharp> M* = x \<sharp> M"
unfolding fresh_def by simp
nominal_primrec
convert:: "lt => lt" ("_+" [250] 250)
where
"(Var x)+ = Var x"
| "(Abs x M)+ = Abs x (M*)"
| "(M $ N)+ = M $ N"
unfolding convert_graph_def eqvt_def
apply (rule, perm_simp, rule, rule)
apply (erule lt.exhaust)
apply (simp_all)
apply blast
apply (simp add: Abs1_eq_iff CPS.eqvt)
by blast
termination (eqvt)
by (relation "measure size") (simp_all)
lemma convert_supp[simp]:
shows "supp (M+) = supp M"
by (induct M rule: lt.induct, simp_all add: lt.supp)
lemma convert_fresh[simp]:
shows "x \<sharp> (M+) = x \<sharp> M"
unfolding fresh_def by simp
lemma [simp]:
shows "isValue (p \<bullet> (M::lt)) = isValue M"
by (nominal_induct M rule: lt.strong_induct) auto
lemma [eqvt]:
shows "p \<bullet> isValue M = isValue (p \<bullet> M)"
by (induct M rule: lt.induct) (perm_simp, rule refl)+
nominal_primrec
Kapply :: "lt \<Rightarrow> lt \<Rightarrow> lt" (infixl ";" 100)
where
"Kapply (Abs x M) K = K $ (Abs x M)+"
| "Kapply (Var x) K = K $ Var x"
| "isValue M \<Longrightarrow> isValue N \<Longrightarrow> Kapply (M $ N) K = M+ $ N+ $ K"
| "isValue M \<Longrightarrow> \<not>isValue N \<Longrightarrow> atom n \<sharp> M \<Longrightarrow> atom n \<sharp> K \<Longrightarrow>
Kapply (M $ N) K = N; (Abs n (M+ $ Var n $ K))"
| "\<not>isValue M \<Longrightarrow> atom m \<sharp> N \<Longrightarrow> atom m \<sharp> K \<Longrightarrow> atom n \<sharp> m \<Longrightarrow> atom n \<sharp> K \<Longrightarrow>
Kapply (M $ N) K = M; (Abs m (N* $ (Abs n (Var m $ Var n $ K))))"
unfolding Kapply_graph_def eqvt_def
apply (rule, perm_simp, rule, rule)
apply (simp_all)
apply (case_tac x)
apply (rule_tac y="a" in lt.exhaust)
apply (auto)
apply (case_tac "isValue lt1")
apply (case_tac "isValue lt2")
apply (auto)[1]
apply (rule_tac x="(lt1, ba)" and ?'a="name" in obtain_fresh)
apply (simp add: fresh_Pair_elim fresh_at_base)
apply (rule_tac x="(lt2, ba)" and ?'a="name" in obtain_fresh)
apply (rule_tac x="(a, ba)" and ?'a="name" in obtain_fresh)
apply (simp add: fresh_Pair_elim fresh_at_base)
apply (auto simp add: Abs1_eq_iff eqvts)[1]
apply (rename_tac M N u K)
apply (subgoal_tac "Abs n (M+ $ n~ $ K) = Abs u (M+ $ u~ $ K)")
apply (simp only:)
apply (auto simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base flip_fresh_fresh[symmetric])[1]
apply (subgoal_tac "Abs m (Na* $ Abs n (m~ $ n~ $ Ka)) = Abs ma (Na* $ Abs na (ma~ $ na~ $ Ka))")
apply (simp only:)
apply (simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base)
apply (subgoal_tac "Ka = (n \<leftrightarrow> na) \<bullet> Ka")
apply (subgoal_tac "Ka = (m \<leftrightarrow> ma) \<bullet> Ka")
apply (subgoal_tac "Ka = (n \<leftrightarrow> (m \<leftrightarrow> ma) \<bullet> na) \<bullet> Ka")
apply (case_tac "m = ma")
apply simp_all
apply rule
apply (auto simp add: flip_fresh_fresh[symmetric])
apply (metis flip_at_base_simps(3) flip_fresh_fresh permute_flip_at)+
done
termination (eqvt)
by (relation "measure (\<lambda>(t, _). size t)") (simp_all)
section{* lemma related to Kapply *}
lemma [simp]: "isValue V \<Longrightarrow> V; K = K $ (V+)"
by (nominal_induct V rule: lt.strong_induct) auto
section{* lemma related to CPS conversion *}
lemma value_CPS:
assumes "isValue V"
and "atom a \<sharp> V"
shows "V* = Abs a (a~ $ V+)"
using assms
proof (nominal_induct V avoiding: a rule: lt.strong_induct, simp_all add: lt.fresh)
fix name :: name and lt aa
assume a: "atom name \<sharp> aa" "\<And>b. \<lbrakk>isValue lt; atom b \<sharp> lt\<rbrakk> \<Longrightarrow> lt* = Abs b (b~ $ lt+)"
"atom aa \<sharp> lt \<or> aa = name"
obtain ab :: name where b: "atom ab \<sharp> (name, lt, a)" using obtain_fresh by blast
show "Abs name lt* = Abs aa (aa~ $ Abs name (lt*))" using a b
by (simp add: Abs1_eq_iff fresh_at_base lt.fresh)
qed
section{* first lemma CPS subst *}
lemma CPS_subst_fv:
assumes *:"isValue V"
shows "((M[V/x])* = (M*)[V+/x])"
using * proof (nominal_induct M avoiding: V x rule: lt.strong_induct)
case (Var name)
assume *: "isValue V"
obtain a :: name where a: "atom a \<sharp> (x, name, V)" using obtain_fresh by blast
show "((name~)[V/x])* = (name~)*[V+/x]" using a
by (simp add: fresh_at_base * value_CPS)
next
case (Abs name lt V x)
assume *: "atom name \<sharp> V" "atom name \<sharp> x" "\<And>b ba. isValue b \<Longrightarrow> (lt[b/ba])* = lt*[b+/ba]"
"isValue V"
obtain a :: name where a: "atom a \<sharp> (name, lt, lt[V/x], x, V)" using obtain_fresh by blast
show "(Abs name lt[V/x])* = Abs name lt*[V+/x]" using * a
by (simp add: fresh_at_base)
next
case (App lt1 lt2 V x)
assume *: "\<And>b ba. isValue b \<Longrightarrow> (lt1[b/ba])* = lt1*[b+/ba]" "\<And>b ba. isValue b \<Longrightarrow> (lt2[b/ba])* = lt2*[b+/ba]"
"isValue V"
obtain a :: name where a: "atom a \<sharp> (lt1[V/x], lt1, lt2[V/x], lt2, V, x)" using obtain_fresh by blast
obtain b :: name where b: "atom b \<sharp> (lt2[V/x], lt2, a, V, x)" using obtain_fresh by blast
obtain c :: name where c: "atom c \<sharp> (a, b, V, x)" using obtain_fresh by blast
show "((lt1 $ lt2)[V/x])* = (lt1 $ lt2)*[V+/x]" using * a b c
by (simp add: fresh_at_base)
qed
lemma [simp]: "isValue V \<Longrightarrow> isValue (V+)"
by (nominal_induct V rule: lt.strong_induct, auto)
lemma CPS_eval_Kapply:
assumes a: "isValue K"
shows "(M* $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* (M ; K)"
using a
proof (nominal_induct M avoiding: K rule: lt.strong_induct, simp_all)
case (Var name K)
assume *: "isValue K"
obtain a :: name where a: "atom a \<sharp> (name, K)" using obtain_fresh by blast
show "(name~)* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* K $ name~" using * a
by simp (rule evbeta', simp_all add: fresh_at_base)
next
fix name :: name and lt K
assume *: "atom name \<sharp> K" "\<And>b. isValue b \<Longrightarrow> lt* $ b \<longrightarrow>\<^isub>\<beta>\<^sup>* lt ; b" "isValue K"
obtain a :: name where a: "atom a \<sharp> (name, K, lt)" using obtain_fresh by blast
then have b: "atom name \<sharp> a" using fresh_PairD(1) fresh_at_base atom_eq_iff by metis
show "Abs name lt* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* K $ Abs name (lt*)" using * a b
by simp (rule evbeta', simp_all)
next
fix lt1 lt2 K
assume *: "\<And>b. isValue b \<Longrightarrow> lt1* $ b \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 ; b" "\<And>b. isValue b \<Longrightarrow> lt2* $ b \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2 ; b" "isValue K"
obtain a :: name where a: "atom a \<sharp> (lt1, lt2, K)" using obtain_fresh by blast
obtain b :: name where b: "atom b \<sharp> (lt1, lt2, K, a)" using obtain_fresh by blast
obtain c :: name where c: "atom c \<sharp> (lt1, lt2, K, a, b)" using obtain_fresh by blast
have d: "atom a \<sharp> lt1" "atom a \<sharp> lt2" "atom a \<sharp> K" "atom b \<sharp> lt1" "atom b \<sharp> lt2" "atom b \<sharp> K" "atom b \<sharp> a"
"atom c \<sharp> lt1" "atom c \<sharp> lt2" "atom c \<sharp> K" "atom c \<sharp> a" "atom c \<sharp> b" using fresh_Pair a b c by simp_all
have "(lt1 $ lt2)* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K))" using * d
by (simp add: fresh_at_base) (rule evbeta', simp_all add: fresh_at_base)
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt1")
assume e: "isValue lt1"
have "lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K)) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs b (lt2* $ Abs c (b~ $ c~ $ K)) $ lt1+"
using * d e by simp
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2* $ Abs c (lt1+ $ c~ $ K)"
by (rule evbeta', simp_all add: * d e, metis d(12) fresh_at_base)
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt2")
assume f: "isValue lt2"
have "lt2* $ Abs c (lt1+ $ c~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs c (lt1+ $ c~ $ K) $ lt2+" using * d e f by simp
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1+ $ lt2+ $ K"
by (rule evbeta', simp_all add: d e f)
finally show ?thesis using * d e f by simp
next
assume f: "\<not> isValue lt2"
have "lt2* $ Abs c (lt1+ $ c~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2 ; Abs c (lt1+ $ c~ $ K)" using * d e f by simp
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2 ; Abs a (lt1+ $ a~ $ K)" using Kapply.simps(4) d e evs1 f by metis
finally show ?thesis using * d e f by simp
qed
finally show ?thesis .
qed (metis Kapply.simps(5) isValue.simps(2) * d)
finally show "(lt1 $ lt2)* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 $ lt2 ; K" .
qed
lemma Kapply_eval:
assumes a: "M \<longrightarrow>\<^isub>\<beta> N" "isValue K"
shows "(M; K) \<longrightarrow>\<^isub>\<beta>\<^sup>* (N; K)"
using assms
proof (induct arbitrary: K rule: eval.induct)
case (evbeta x V M)
fix K
assume a: "isValue K" "isValue V" "atom x \<sharp> V"
have "Abs x (M*) $ V+ $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* ((M*)[V+/x] $ K)"
by (rule evs2,rule ev2,rule Lt.evbeta) (simp_all add: fresh_def a[simplified fresh_def] evs1)
also have "... = ((M[V/x])* $ K)" by (simp add: CPS_subst_fv a)
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (M[V/x] ; K)" by (rule CPS_eval_Kapply, simp_all add: a)
finally show "(Abs x M $ V ; K) \<longrightarrow>\<^isub>\<beta>\<^sup>* (M[V/x] ; K)" using a by simp
next
case (ev1 V M N)
fix V M N K
assume a: "isValue V" "M \<longrightarrow>\<^isub>\<beta> N" "\<And>K. isValue K \<Longrightarrow> M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* N ; K" "isValue K"
obtain a :: name where b: "atom a \<sharp> (V, K, M, N)" using obtain_fresh by blast
show "V $ M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* V $ N ; K" proof (cases "isValue N")
assume "\<not> isValue N"
then show "V $ M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* V $ N ; K" using a b by simp
next
assume n: "isValue N"
have c: "M; Abs a (V+ $ a~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs a (V+ $ a~ $ K) $ N+" using a b by (simp add: n)
also have d: "... \<longrightarrow>\<^isub>\<beta>\<^sup>* V+ $ N+ $ K" by (rule evbeta') (simp_all add: a b n)
finally show "V $ M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* V $ N ; K" using a b by (simp add: n)
qed
next
case (ev2 M M' N)
assume *: "M \<longrightarrow>\<^isub>\<beta> M'" "\<And>K. isValue K \<Longrightarrow> M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* M' ; K" "isValue K"
obtain a :: name where a: "atom a \<sharp> (K, M, N, M')" using obtain_fresh by blast
obtain b :: name where b: "atom b \<sharp> (a, K, M, N, M', N+)" using obtain_fresh by blast
have d: "atom a \<sharp> K" "atom a \<sharp> M" "atom a \<sharp> N" "atom a \<sharp> M'" "atom b \<sharp> a" "atom b \<sharp> K"
"atom b \<sharp> M" "atom b \<sharp> N" "atom b \<sharp> M'" using a b fresh_Pair by simp_all
have "M $ N ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* M' ; Abs a (N* $ Abs b (a~ $ b~ $ K))" using * d by simp
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* M' $ N ; K" proof (cases "isValue M'")
assume "\<not> isValue M'"
then show ?thesis using * d by (simp_all add: evs1)
next
assume e: "isValue M'"
then have "M' ; Abs a (N* $ Abs b (a~ $ b~ $ K)) = Abs a (N* $ Abs b (a~ $ b~ $ K)) $ M'+" by simp
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (N* $ Abs b (a~ $ b~ $ K))[M'+/a]"
by (rule evbeta') (simp_all add: fresh_at_base e d)
also have "... = N* $ Abs b (M'+ $ b~ $ K)" using * d by (simp add: fresh_at_base)
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* M' $ N ; K" proof (cases "isValue N")
assume f: "isValue N"
have "N* $ Abs b (M'+ $ b~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs b (M'+ $ b~ $ K) $ N+"
by (rule eval_trans, rule CPS_eval_Kapply) (simp_all add: d e f * evs1)
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* M' $ N ; K" by (rule evbeta') (simp_all add: d e f evs1)
finally show ?thesis .
next
assume "\<not> isValue N"
then show ?thesis using d e
by (metis CPS_eval_Kapply Kapply.simps(4) isValue.simps(2))
qed
finally show ?thesis .
qed
finally show ?case .
qed
lemma Kapply_eval_rtrancl:
assumes H: "M \<longrightarrow>\<^isub>\<beta>\<^sup>* N" and "isValue K"
shows "(M;K) \<longrightarrow>\<^isub>\<beta>\<^sup>* (N;K)"
using H
by (induct) (metis Kapply_eval assms(2) eval_trans evs1)+
lemma
assumes "isValue V" "M \<longrightarrow>\<^isub>\<beta>\<^sup>* V"
shows "M* $ (Abs x (x~)) \<longrightarrow>\<^isub>\<beta>\<^sup>* V+"
proof-
obtain y::name where *: "atom y \<sharp> V" using obtain_fresh by blast
have e: "Abs x (x~) = Abs y (y~)"
by (simp add: Abs1_eq_iff lt.fresh fresh_at_base)
have "M* $ Abs x (x~) \<longrightarrow>\<^isub>\<beta>\<^sup>* M ; Abs x (x~)"
by(rule CPS_eval_Kapply,simp_all add: assms)
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (V ; Abs x (x~))" by (rule Kapply_eval_rtrancl, simp_all add: assms)
also have "... = V ; Abs y (y~)" using e by (simp only:)
also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (V+)" by (simp add: assms, rule evbeta') (simp_all add: assms *)
finally show "M* $ (Abs x (x~)) \<longrightarrow>\<^isub>\<beta>\<^sup>* (V+)" .
qed
end