theory BetaCR
imports CR
begin
(* TODO1: Does not work:*)
(* equivariance beta_star *)
(* proved manually below. *)
lemma eqvt_helper: "x1 \<longrightarrow>b* x2 \<Longrightarrow> (p \<bullet> x1) \<longrightarrow>b* (p \<bullet> x2)"
by (erule beta_star.induct)
(metis beta.eqvt bs2 bs1)+
lemma [eqvt]: "p \<bullet> (x1 \<longrightarrow>b* x2) = ((p \<bullet> x1) \<longrightarrow>b* (p \<bullet> x2))"
apply rule
apply (drule permute_boolE)
apply (erule eqvt_helper)
apply (intro permute_boolI)
apply (drule_tac p="-p" in eqvt_helper)
by simp
definition
equ :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<approx> _")
where
"t \<approx> s \<longleftrightarrow> (\<exists>r. t \<longrightarrow>b* r \<and> s \<longrightarrow>b* r)"
lemma equ_refl:
shows "t \<approx> t"
unfolding equ_def by auto
lemma equ_sym:
assumes "t \<approx> s"
shows "s \<approx> t"
using assms unfolding equ_def
by auto
lemma equ_trans:
assumes "A \<approx> B" "B \<approx> C"
shows "A \<approx> C"
using assms unfolding equ_def
proof (elim exE conjE)
fix D E
assume a: "A \<longrightarrow>b* D" "B \<longrightarrow>b* D" "B \<longrightarrow>b* E" "C \<longrightarrow>b* E"
then obtain F where "D \<longrightarrow>b* F" "E \<longrightarrow>b* F" using CR_for_Beta_star by blast
then have "A \<longrightarrow>b* F \<and> C \<longrightarrow>b* F" using a bs3 by blast
then show "\<exists>F. A \<longrightarrow>b* F \<and> C \<longrightarrow>b* F" by blast
qed
lemma App_beta: "A \<longrightarrow>b* B \<Longrightarrow> C \<longrightarrow>b* D \<Longrightarrow> App A C \<longrightarrow>b* App B D"
apply (erule beta_star.induct)
apply auto
apply (erule beta_star.induct)
apply auto
done
lemma Lam_beta: "A \<longrightarrow>b* B \<Longrightarrow> Lam [x]. A \<longrightarrow>b* Lam [x]. B"
by (erule beta_star.induct) auto
lemma Lam_rsp: "A \<approx> B \<Longrightarrow> Lam [x]. A \<approx> Lam [x]. B"
unfolding equ_def
apply auto
apply (rule_tac x="Lam [x]. r" in exI)
apply (auto simp add: Lam_beta)
done
lemma [quot_respect]:
shows "(op = ===> equ) Var Var"
and "(equ ===> equ ===> equ) App App"
and "(op = ===> equ ===> equ) CR.Lam CR.Lam"
unfolding fun_rel_def equ_def
apply auto
apply (rule_tac x="App r ra" in exI)
apply (auto simp add: App_beta)
apply (rule_tac x="Lam [x]. r" in exI)
apply (auto simp add: Lam_beta)
done
lemma beta_subst1_pre: "B \<longrightarrow>b C \<Longrightarrow> A [x ::= B] \<longrightarrow>b* A [x ::= C]"
by (nominal_induct A avoiding: x B C rule: lam.strong_induct)
(auto simp add: App_beta Lam_beta)
lemma beta_subst1: "B \<longrightarrow>b* C \<Longrightarrow> A [x ::= B] \<longrightarrow>b* A [x ::= C]"
apply (erule beta_star.induct)
apply auto
apply (subgoal_tac "A [x ::= M2] \<longrightarrow>b* A [x ::= M3]")
apply (rotate_tac 1)
apply (erule bs3)
apply assumption
apply (simp add: beta_subst1_pre)
done
lemma beta_subst2_pre:
assumes "A \<longrightarrow>b B" shows "A [x ::= C] \<longrightarrow>b* B [x ::= C]"
using assms
apply (nominal_induct avoiding: x C rule: beta.strong_induct)
apply (auto simp add: App_beta fresh_star_def fresh_Pair Lam_beta)[3]
apply (subst substitution_lemma)
apply (auto simp add: fresh_star_def fresh_Pair fresh_at_base)[2]
apply (auto simp add: fresh_star_def fresh_Pair)
apply (rule beta_star.intros)
defer
apply (subst beta.intros)
apply (auto simp add: fresh_fact)
done
lemma beta_subst2: "A \<longrightarrow>b* B \<Longrightarrow> A [x ::= C] \<longrightarrow>b* B [x ::= C]"
apply (erule beta_star.induct)
apply auto
apply (subgoal_tac "M2[x ::= C] \<longrightarrow>b* M3[x ::= C]")
apply (rotate_tac 1)
apply (erule bs3)
apply assumption
apply (simp add: beta_subst2_pre)
done
lemma beta_subst: "A \<longrightarrow>b* B \<Longrightarrow> C \<longrightarrow>b* D \<Longrightarrow> A [x ::= C] \<longrightarrow>b* B [x ::= D]"
using beta_subst1 beta_subst2 bs3 by metis
lemma subst_rsp_pre:
"x \<approx> y \<Longrightarrow> xb \<approx> ya \<Longrightarrow> x [xa ::= xb] \<approx> y [xa ::= ya]"
unfolding equ_def
apply auto
apply (rule_tac x="r [xa ::= ra]" in exI)
apply (simp add: beta_subst)
done
lemma [quot_respect]:
shows "(equ ===> op = ===> equ ===> equ) subst subst"
unfolding fun_rel_def by (auto simp add: subst_rsp_pre)
lemma [quot_respect]:
shows "(op = ===> equ ===> equ) permute permute"
unfolding fun_rel_def equ_def
apply (auto intro: eqvts)
apply (rule_tac x="x \<bullet> r" in exI)
using eqvts(1) permute_boolI by metis
quotient_type qlam = lam / equ
by (auto intro!: equivpI reflpI sympI transpI simp add: equ_refl equ_sym)
(erule equ_trans, assumption)
quotient_definition "QVar::name \<Rightarrow> qlam" is Var
quotient_definition "QApp::qlam \<Rightarrow> qlam \<Rightarrow> qlam" is App
quotient_definition QLam ("QLam [_]._")
where "QLam::name \<Rightarrow> qlam \<Rightarrow> qlam" is CR.Lam
lemmas qlam_strong_induct = lam.strong_induct[quot_lifted]
lemmas qlam_induct = lam.induct[quot_lifted]
instantiation qlam :: pt
begin
quotient_definition "permute_qlam::perm \<Rightarrow> qlam \<Rightarrow> qlam"
is "permute::perm \<Rightarrow> lam \<Rightarrow> lam"
instance
apply default
apply(descending)
apply(simp)
apply(rule equ_refl)
apply(descending)
apply(simp)
apply(rule equ_refl)
done
end
lemma qlam_perm[simp, eqvt]:
shows "p \<bullet> (QVar x) = QVar (p \<bullet> x)"
and "p \<bullet> (QApp t s) = QApp (p \<bullet> t) (p \<bullet> s)"
and "p \<bullet> (QLam [x].t) = QLam [p \<bullet> x].(p \<bullet> t)"
by(descending, simp add: equ_refl)+
lemma qlam_supports:
shows "{atom x} supports (QVar x)"
and "supp (t, s) supports (QApp t s)"
and "supp (x, t) supports (QLam [x].t)"
unfolding supports_def fresh_def[symmetric]
by (auto simp add: swap_fresh_fresh)
lemma qlam_fs:
fixes t::"qlam"
shows "finite (supp t)"
apply(induct t rule: qlam_induct)
apply(rule supports_finite)
apply(rule qlam_supports)
apply(simp)
apply(rule supports_finite)
apply(rule qlam_supports)
apply(simp add: supp_Pair)
apply(rule supports_finite)
apply(rule qlam_supports)
apply(simp add: supp_Pair finite_supp)
done
instantiation qlam :: fs
begin
instance
apply(default)
apply(rule qlam_fs)
done
end
quotient_definition subst_qlam ("_[_ ::q= _]")
where "subst_qlam::qlam \<Rightarrow> name \<Rightarrow> qlam \<Rightarrow> qlam" is subst
definition
"Supp t = \<Inter>{supp s | s. s \<approx> t}"
lemma Supp_rsp:
"a \<approx> b \<Longrightarrow> Supp a = Supp b"
unfolding Supp_def
apply(rule_tac f="Inter" in arg_cong)
apply(auto)
apply (metis equ_trans)
by (metis equivp_def qlam_equivp)
lemma [quot_respect]:
shows "(equ ===> op=) Supp Supp"
unfolding fun_rel_def by (auto simp add: Supp_rsp)
quotient_definition "supp_qlam::qlam \<Rightarrow> atom set"
is "Supp::lam \<Rightarrow> atom set"
lemma Supp_supp:
"Supp t \<subseteq> supp t"
unfolding Supp_def
apply(auto)
apply(drule_tac x="supp t" in spec)
apply(auto simp add: equ_refl)
done
lemma supp_subst:
shows "supp (t[x ::= s]) \<subseteq> (supp t - {atom x}) \<union> supp s"
by (induct t x s rule: subst.induct) (auto simp add: lam.supp supp_at_base)
lemma supp_beta: "x \<longrightarrow>b r \<Longrightarrow> supp r \<subseteq> supp x"
apply (induct rule: beta.induct)
apply (simp_all add: lam.supp)
apply blast+
using supp_subst by blast
lemma supp_beta_star: "x \<longrightarrow>b* r \<Longrightarrow> supp r \<subseteq> supp x"
apply (erule beta_star.induct)
apply auto
using supp_beta by blast
lemma supp_equ: "x \<approx> y \<Longrightarrow> \<exists>z. z \<approx> x \<and> supp z \<subseteq> supp x \<inter> supp y"
unfolding equ_def
apply (simp (no_asm) only: equ_def[symmetric])
apply (elim exE)
apply (rule_tac x=r in exI)
apply rule
apply (metis bs1 equ_def)
using supp_beta_star by blast
lemma supp_psubset: "Supp x \<subset> supp x \<Longrightarrow> \<exists>t. t \<approx> x \<and> supp t \<subset> supp x"
proof -
assume "Supp x \<subset> supp x"
then obtain a where "a \<in> supp x" "a \<notin> Supp x" by blast
then obtain y where nin: "y \<approx> x" "a \<notin> supp y" unfolding Supp_def by blast
then obtain t where eq: "t \<approx> x" "supp t \<subseteq> supp x \<inter> supp y"
using supp_equ equ_sym by blast
then have "supp t \<subset> supp x" using nin
by (metis `(a\<Colon>atom) \<in> supp (x\<Colon>lam)` le_infE psubset_eq set_rev_mp)
then show "\<exists>t. t \<approx> x \<and> supp t \<subset> supp x" using eq by blast
qed
lemma Supp_exists: "\<exists>t. supp t = Supp t \<and> t \<approx> x"
proof -
have "\<And>fs x. supp x = fs \<Longrightarrow> \<exists>t. supp t = Supp t \<and> t \<approx> x"
proof -
fix fs
show "\<And>x. supp x = fs \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
proof (cases "finite fs")
case True
assume fs: "finite fs"
then show "\<And>x. supp x = fs \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
proof (induct fs rule: finite_psubset_induct, clarify)
fix A :: "atom set" fix x :: lam
assume IH: "\<And>B xa. \<lbrakk>B \<subset> supp x; supp xa = B\<rbrakk> \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> xa"
show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
proof (cases "supp x = Supp x")
assume "supp x = Supp x"
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
by (rule_tac x="x" in exI) (simp add: equ_refl)
next
assume "supp x \<noteq> Supp x"
then have "Supp x \<subset> supp x" using Supp_supp by blast
then obtain y where a1: "supp y \<subset> supp x" "y \<approx> x"
using supp_psubset by blast
then obtain t where "supp t = Supp t \<and> t \<approx> y"
using IH[of "supp y" y] by blast
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x" using a1 equ_trans
by blast
qed
qed
next
case False
fix x :: lam
assume "supp x = fs" "infinite fs"
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
by (auto simp add: finite_supp)
qed simp
qed
then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x" by blast
qed
lemma subst3: "x \<noteq> y \<and> atom x \<notin> Supp s \<Longrightarrow> Lam [x]. t [y ::= s] \<approx> Lam [x]. (t [y ::= s])"
proof -
assume as: "x \<noteq> y \<and> atom x \<notin> Supp s"
obtain s' where s: "supp s' = Supp s'" "s' \<approx> s" using Supp_exists[of s] by blast
then have lhs: "Lam [x]. t [y ::= s] \<approx> Lam [x]. t [y ::= s']" using subst_rsp_pre equ_refl equ_sym by blast
have supp: "Supp s' = Supp s" using Supp_rsp s(2) by blast
have lhs_rhs: "Lam [x]. t [y ::= s'] = Lam [x]. (t [y ::= s'])"
by (simp add: fresh_def supp_Pair s supp as supp_at_base)
have "t [y ::= s'] \<approx> t [y ::= s]"
using subst_rsp_pre[OF equ_refl s(2)] .
with Lam_rsp have rhs: "Lam [x]. (t [y ::= s']) \<approx> Lam [x]. (t [y ::= s])" .
show ?thesis
using lhs[unfolded lhs_rhs] rhs equ_trans by blast
qed
thm subst3[quot_lifted]
lemma Supp_Lam:
"atom a \<notin> Supp (Lam [a].t)"
proof -
have "atom a \<notin> supp (Lam [a].t)" by (simp add: lam.supp)
then show ?thesis using Supp_supp
by blast
qed
lemma [eqvt]: "(p \<bullet> (a \<approx> b)) = ((p \<bullet> a) \<approx> (p \<bullet> b))"
unfolding equ_def
by perm_simp rule
lemma [eqvt]: "p \<bullet> (Supp x) = Supp (p \<bullet> x)"
unfolding Supp_def
by perm_simp rule
lemmas s = Supp_Lam[quot_lifted]
lemma var_beta_pre: "s \<longrightarrow>b* r \<Longrightarrow> s = Var name \<Longrightarrow> r = Var name"
apply (induct rule: beta_star.induct)
apply simp
apply (subgoal_tac "M2 = Var name")
apply (thin_tac "M1 \<longrightarrow>b* M2")
apply (thin_tac "M1 = Var name")
apply (thin_tac "M1 = Var name \<Longrightarrow> M2 = Var name")
defer
apply simp
apply (erule_tac beta.cases)
apply simp_all
done
lemma var_beta: "Var name \<longrightarrow>b* r \<longleftrightarrow> r = Var name"
by (auto simp add: var_beta_pre)
lemma qlam_eq_iff:
"(QVar n = QVar m) = (n = m)"
apply descending unfolding equ_def var_beta by auto
lemma "supp (QVar n) = {atom n}"
unfolding supp_def
apply simp
unfolding qlam_eq_iff
apply (fold supp_def)
apply (simp add: supp_at_base)
done
end