termination does not automatically prove equivariance for the defined function (label: no_eqvt)
(* Title: Quotient_Product.thy
Author: Cezary Kaliszyk and Christian Urban
*)
theory Quotient_Product
imports Quotient Quotient_Syntax
begin
section {* Quotient infrastructure for the product type. *}
fun
prod_rel
where
"prod_rel R1 R2 = (\<lambda>(a, b) (c, d). R1 a c \<and> R2 b d)"
declare [[map * = (prod_fun, prod_rel)]]
lemma prod_equivp[quot_equiv]:
assumes a: "equivp R1"
assumes b: "equivp R2"
shows "equivp (prod_rel R1 R2)"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
apply(simp_all add: split_paired_all)
apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
done
lemma prod_quotient[quot_thm]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)"
unfolding Quotient_def
apply(simp add: split_paired_all)
apply(simp add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
apply(simp add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
using q1 q2
unfolding Quotient_def
apply(blast)
done
lemma Pair_rsp[quot_respect]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair"
by simp
lemma Pair_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair"
apply(simp add: expand_fun_eq)
apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
done
lemma fst_rsp[quot_respect]:
assumes "Quotient R1 Abs1 Rep1"
assumes "Quotient R2 Abs2 Rep2"
shows "(prod_rel R1 R2 ===> R1) fst fst"
by simp
lemma fst_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst"
apply(simp add: expand_fun_eq)
apply(simp add: Quotient_abs_rep[OF q1])
done
lemma snd_rsp[quot_respect]:
assumes "Quotient R1 Abs1 Rep1"
assumes "Quotient R2 Abs2 Rep2"
shows "(prod_rel R1 R2 ===> R2) snd snd"
by simp
lemma snd_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd"
apply(simp add: expand_fun_eq)
apply(simp add: Quotient_abs_rep[OF q2])
done
lemma split_rsp[quot_respect]:
shows "((R1 ===> R2 ===> (op =)) ===> (prod_rel R1 R2) ===> (op =)) split split"
by auto
lemma split_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(((Abs1 ---> Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> id) split) = split"
by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
lemma prod_fun_id[id_simps]:
shows "prod_fun id id = id"
by (simp add: prod_fun_def)
lemma prod_rel_eq[id_simps]:
shows "prod_rel (op =) (op =) = (op =)"
by (simp add: expand_fun_eq)
end