QuotMain.thy
author Christian Urban <urbanc@in.tum.de>
Sun, 22 Nov 2009 00:01:06 +0100
changeset 330 1a0f0b758071
parent 326 e755a5da14c8
child 334 5a7024be9083
permissions -rw-r--r--
a little tuning of comments

theory QuotMain
imports QuotScript QuotList Prove
uses ("quotient_info.ML") 
     ("quotient.ML")
     ("quotient_def.ML")
begin


locale QUOT_TYPE =
  fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
  and   Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
  and   Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
  assumes equiv: "EQUIV R"
  and     rep_prop: "\<And>y. \<exists>x. Rep y = R x"
  and     rep_inverse: "\<And>x. Abs (Rep x) = x"
  and     abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
  and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
begin

definition
  ABS::"'a \<Rightarrow> 'b"
where
  "ABS x \<equiv> Abs (R x)"

definition
  REP::"'b \<Rightarrow> 'a"
where
  "REP a = Eps (Rep a)"

lemma lem9:
  shows "R (Eps (R x)) = R x"
proof -
  have a: "R x x" using equiv by (simp add: EQUIV_REFL_SYM_TRANS REFL_def)
  then have "R x (Eps (R x))" by (rule someI)
  then show "R (Eps (R x)) = R x"
    using equiv unfolding EQUIV_def by simp
qed

theorem thm10:
  shows "ABS (REP a) \<equiv> a"
  apply  (rule eq_reflection)
  unfolding ABS_def REP_def
proof -
  from rep_prop
  obtain x where eq: "Rep a = R x" by auto
  have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
  also have "\<dots> = Abs (R x)" using lem9 by simp
  also have "\<dots> = Abs (Rep a)" using eq by simp
  also have "\<dots> = a" using rep_inverse by simp
  finally
  show "Abs (R (Eps (Rep a))) = a" by simp
qed

lemma REP_refl:
  shows "R (REP a) (REP a)"
unfolding REP_def
by (simp add: equiv[simplified EQUIV_def])

lemma lem7:
  shows "(R x = R y) = (Abs (R x) = Abs (R y))"
apply(rule iffI)
apply(simp)
apply(drule rep_inject[THEN iffD2])
apply(simp add: abs_inverse)
done

theorem thm11:
  shows "R r r' = (ABS r = ABS r')"
unfolding ABS_def
by (simp only: equiv[simplified EQUIV_def] lem7)


lemma REP_ABS_rsp:
  shows "R f (REP (ABS g)) = R f g"
  and   "R (REP (ABS g)) f = R g f"
by (simp_all add: thm10 thm11)

lemma QUOTIENT:
  "QUOTIENT R ABS REP"
apply(unfold QUOTIENT_def)
apply(simp add: thm10)
apply(simp add: REP_refl)
apply(subst thm11[symmetric])
apply(simp add: equiv[simplified EQUIV_def])
done

lemma R_trans:
  assumes ab: "R a b"
  and     bc: "R b c"
  shows "R a c"
proof -
  have tr: "TRANS R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
  moreover have ab: "R a b" by fact
  moreover have bc: "R b c" by fact
  ultimately show "R a c" unfolding TRANS_def by blast
qed

lemma R_sym:
  assumes ab: "R a b"
  shows "R b a"
proof -
  have re: "SYM R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
  then show "R b a" using ab unfolding SYM_def by blast
qed

lemma R_trans2:
  assumes ac: "R a c"
  and     bd: "R b d"
  shows "R a b = R c d"
using ac bd
by (blast intro: R_trans R_sym)

lemma REPS_same:
  shows "R (REP a) (REP b) \<equiv> (a = b)"
proof -
  have "R (REP a) (REP b) = (a = b)"
  proof
    assume as: "R (REP a) (REP b)"
    from rep_prop
    obtain x y
      where eqs: "Rep a = R x" "Rep b = R y" by blast
    from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp
    then have "R x (Eps (R y))" using lem9 by simp
    then have "R (Eps (R y)) x" using R_sym by blast
    then have "R y x" using lem9 by simp
    then have "R x y" using R_sym by blast
    then have "ABS x = ABS y" using thm11 by simp
    then have "Abs (Rep a) = Abs (Rep b)" using eqs unfolding ABS_def by simp
    then show "a = b" using rep_inverse by simp
  next
    assume ab: "a = b"
    have "REFL R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
    then show "R (REP a) (REP b)" unfolding REFL_def using ab by auto
  qed
  then show "R (REP a) (REP b) \<equiv> (a = b)" by simp
qed

end

section {* type definition for the quotient type *}

(* the auxiliary data for the quotient types *)
use "quotient_info.ML"

declare [[map list = (map, LIST_REL)]]
declare [[map * = (prod_fun, prod_rel)]]
declare [[map "fun" = (fun_map, FUN_REL)]]

ML {* maps_lookup @{theory} "List.list" *}
ML {* maps_lookup @{theory} "*" *}
ML {* maps_lookup @{theory} "fun" *}


(* definition of the quotient types *)
(* FIXME: should be called quotient_typ.ML *)
use "quotient.ML"


(* lifting of constants *)
use "quotient_def.ML"



section {* ATOMIZE *}

lemma atomize_eqv[atomize]: 
  shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)" 
proof
  assume "A \<equiv> B" 
  then show "Trueprop A \<equiv> Trueprop B" by unfold
next
  assume *: "Trueprop A \<equiv> Trueprop B"
  have "A = B"
  proof (cases A)
    case True
    have "A" by fact
    then show "A = B" using * by simp
  next
    case False
    have "\<not>A" by fact
    then show "A = B" using * by auto
  qed
  then show "A \<equiv> B" by (rule eq_reflection)
qed

ML {*
fun atomize_thm thm =
let
  val thm' = Thm.freezeT (forall_intr_vars thm)
  val thm'' = ObjectLogic.atomize (cprop_of thm')
in
  @{thm Pure.equal_elim_rule1} OF [thm'', thm']
end
*}

ML {* atomize_thm @{thm list.induct} *}

section {* REGULARIZE *}
(*

Regularizing a theorem means:
 - Quantifiers over a type that needs lifting are replaced by
   bounded quantifiers, for example:
      \<forall>x. P     \<Longrightarrow>     \<forall>x\<in>(Respects R). P
 - Abstractions over a type that needs lifting are replaced
   by bounded abstractions:
      \<lambda>x. P     \<Longrightarrow>     Ball (Respects R) (\<lambda>x. P)

 - Equalities over the type being lifted are replaced by
   appropriate relations:
      A = B     \<Longrightarrow>     A \<approx> B
   Example with more complicated types of A, B:
      A = B     \<Longrightarrow>     (op = \<Longrightarrow> op \<approx>) A B

Regularizing is done in 3 phases:
 - First a regularized term is created
 - Next we prove that the original theorem implies the new one
 - Finally using MP we get the new theorem.

To prove that the old theorem implies the new one, we first
atomize it and then try:
 - Reflexivity of the relation
 - Assumption
 - Elimnating quantifiers on both sides of toplevel implication
 - Simplifying implications on both sides of toplevel implication
 - Ball (Respects ?E) ?P = All ?P
 - (\<And>x. ?R x \<Longrightarrow> ?P x \<longrightarrow> ?Q x) \<Longrightarrow> All ?P \<longrightarrow> Ball ?R ?Q

*)

text {* tyRel takes a type and builds a relation that a quantifier over this
  type needs to respect. *}
ML {*
fun tyRel ty rty rel lthy =
  if Sign.typ_instance (ProofContext.theory_of lthy) (ty, rty)
  then rel
  else (case ty of
          Type (s, tys) =>
            let
              val tys_rel = map (fn ty => ty --> ty --> @{typ bool}) tys;
              val ty_out = ty --> ty --> @{typ bool};
              val tys_out = tys_rel ---> ty_out;
            in
            (case (maps_lookup (ProofContext.theory_of lthy) s) of
               SOME (info) => list_comb (Const (#relfun info, tys_out),
                              map (fn ty => tyRel ty rty rel lthy) tys)
             | NONE  => HOLogic.eq_const ty
            )
            end
        | _ => HOLogic.eq_const ty)
*}

(* 
ML {* cterm_of @{theory} 
  (tyRel @{typ "'a \<Rightarrow> 'a list \<Rightarrow> 't \<Rightarrow> 't"} (Logic.varifyT @{typ "'a list"}) 
         @{term "f::('a list \<Rightarrow> 'a list \<Rightarrow> bool)"} @{context}) 
*} 
*)

definition
  Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
where
  "(x \<in> p) \<Longrightarrow> (Babs p m x = m x)"
(* TODO: Consider defining it with an "if"; sth like:
   Babs p m = \<lambda>x. if x \<in> p then m x else undefined
*)

ML {*
fun needs_lift (rty as Type (rty_s, _)) ty =
  case ty of
    Type (s, tys) =>
      (s = rty_s) orelse (exists (needs_lift rty) tys)
  | _ => false

*}

ML {*
fun mk_babs ty ty' = Const (@{const_name "Babs"}, [ty' --> @{typ bool}, ty] ---> ty)
fun mk_ball ty = Const (@{const_name "Ball"}, [ty, ty] ---> @{typ bool})
fun mk_bex ty = Const (@{const_name "Bex"}, [ty, ty] ---> @{typ bool})
fun mk_resp ty = Const (@{const_name Respects}, [[ty, ty] ---> @{typ bool}, ty] ---> @{typ bool})
*}

(* applies f to the subterm of an abstractions, otherwise to the given term *)
ML {*
fun apply_subt f trm =
  case trm of
    Abs (x, T, t) => 
       let 
         val (x', t') = Term.dest_abs (x, T, t)
       in
         Term.absfree (x', T, f t') 
       end
  | _ => f trm
*}

(* FIXME: if there are more than one quotient, then you have to look up the relation *)
ML {*
fun my_reg lthy rel rty trm =
  case trm of
    Abs (x, T, t) =>
       if (needs_lift rty T) then
         let
            val rrel = tyRel T rty rel lthy
         in
           (mk_babs (fastype_of trm) T) $ (mk_resp T $ rrel) $ (apply_subt (my_reg lthy rel rty) trm)
         end
       else
         Abs(x, T, (apply_subt (my_reg lthy rel rty) t))
  | Const (@{const_name "All"}, ty) $ (t as Abs (x, T, _)) =>
       let
          val ty1 = domain_type ty
          val ty2 = domain_type ty1
          val rrel = tyRel T rty rel lthy
       in
         if (needs_lift rty T) then
           (mk_ball ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t)
         else
           Const (@{const_name "All"}, ty) $ apply_subt (my_reg lthy rel rty) t
       end
  | Const (@{const_name "Ex"}, ty) $ (t as Abs (x, T, _)) =>
       let
          val ty1 = domain_type ty
          val ty2 = domain_type ty1
          val rrel = tyRel T rty rel lthy
       in
         if (needs_lift rty T) then
           (mk_bex ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t)
         else
           Const (@{const_name "Ex"}, ty) $ apply_subt (my_reg lthy rel rty) t
       end
  | Const (@{const_name "op ="}, ty) $ t =>
      if needs_lift rty (fastype_of t) then
        (tyRel (fastype_of t) rty rel lthy) $ t   (* FIXME: t should be regularised too *)
      else Const (@{const_name "op ="}, ty) $ (my_reg lthy rel rty t)
  | t1 $ t2 => (my_reg lthy rel rty t1) $ (my_reg lthy rel rty t2)
  | _ => trm
*}

(* For polymorphic types we need to find the type of the Relation term. *)
(* TODO: we assume that the relation is a Constant. Is this always true? *)
ML {*
fun my_reg_inst lthy rel rty trm =
  case rel of
    Const (n, _) => Syntax.check_term lthy
      (my_reg lthy (Const (n, dummyT)) (Logic.varifyT rty) trm)
*}

(*
ML {*
  val r = Free ("R", dummyT);
  val t = (my_reg_inst @{context} r @{typ "'a list"} @{term "\<forall>(x::'b list). P x"});
  val t2 = Syntax.check_term @{context} t;
  cterm_of @{theory} t2
*}
*)

text {* Assumes that the given theorem is atomized *}
ML {*
  fun build_regularize_goal thm rty rel lthy =
     Logic.mk_implies
       ((prop_of thm),
       (my_reg_inst lthy rel rty (prop_of thm)))
*}

lemma universal_twice:
  assumes *: "\<And>x. (P x \<longrightarrow> Q x)"
  shows "(\<forall>x. P x) \<longrightarrow> (\<forall>x. Q x)"
using * by auto

lemma implication_twice:
  assumes a: "c \<longrightarrow> a"
  assumes b: "a \<Longrightarrow> b \<longrightarrow> d"
  shows "(a \<longrightarrow> b) \<longrightarrow> (c \<longrightarrow> d)"
using a b by auto

ML {*
fun regularize thm rty rel rel_eqv rel_refl lthy =
  let
    val goal = build_regularize_goal thm rty rel lthy;
    fun tac ctxt =
      (ObjectLogic.full_atomize_tac) THEN'
      REPEAT_ALL_NEW (FIRST' [
        rtac rel_refl,
        atac,
        rtac @{thm universal_twice},
        (rtac @{thm impI} THEN' atac),
        rtac @{thm implication_twice},
        EqSubst.eqsubst_tac ctxt [0]
          [(@{thm equiv_res_forall} OF [rel_eqv]),
           (@{thm equiv_res_exists} OF [rel_eqv])],
        (* For a = b \<longrightarrow> a \<approx> b *)
        (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
        (rtac @{thm RIGHT_RES_FORALL_REGULAR})
      ]);
    val cthm = Goal.prove lthy [] [] goal
      (fn {context, ...} => tac context 1);
  in
    cthm OF [thm]
  end
*}

section {* RepAbs injection *}
(*

RepAbs injection is done in the following phases:
 1) build_repabs_term inserts rep-abs pairs in the term
 2) we prove the equality between the original theorem and this one
 3) we use Pure.equal_elim_rule1 to get the new theorem.

build_repabs_term does:

  For abstractions:
  * If the type of the abstraction doesn't need lifting we recurse.
  * If it does we add RepAbs around the whole term and check if the
    variable needs lifting.
    * If it doesn't then we recurse
    * If it does we recurse and put 'RepAbs' around all occurences
      of the variable in the obtained subterm. This in combination
      with the RepAbs above will let us change the type of the
      abstraction with rewriting.
  For applications:
  * If the term is 'Respects' applied to anything we leave it unchanged
  * If the term needs lifting and the head is a constant that we know
    how to lift, we put a RepAbs and recurse
  * If the term needs lifting and the head is a free applied to subterms
    (if it is not applied we treated it in Abs branch) then we
    put RepAbs and recurse
  * Otherwise just recurse.


To prove that the old theorem implies the new one, we first
atomize it and then try:

 1) theorems 'trans2' from the appropriate QUOT_TYPE
 2) remove lambdas from both sides (LAMBDA_RES_TAC)
 3) remove Ball/Bex from the right hand side
 4) use user-supplied RSP theorems
 5) remove rep_abs from the right side
 6) reflexivity of equality
 7) split applications of lifted type (apply_rsp)
 8) split applications of non-lifted type (cong_tac)
 9) apply extentionality
10) reflexivity of the relation
11) assumption
    (Lambdas under respects may have left us some assumptions)
12) proving obvious higher order equalities by simplifying fun_rel
    (not sure if it is still needed?)
13) unfolding lambda on one side
14) simplifying (= ===> =) for simpler respectfullness

*)


(* changes (?'a ?'b raw) (?'a ?'b quo) (int 'b raw \<Rightarrow> bool) to (int 'b quo \<Rightarrow> bool) *)
ML {*
fun exchange_ty lthy rty qty ty =
  let
    val thy = ProofContext.theory_of lthy
  in
    if Sign.typ_instance thy (ty, rty) then
      let
        val inst = Sign.typ_match thy (rty, ty) Vartab.empty
      in
        Envir.subst_type inst qty
      end
    else
      let
        val (s, tys) = dest_Type ty
      in
        Type (s, map (exchange_ty lthy rty qty) tys)
      end
  end
  handle TYPE _ => ty (* for dest_Type *)
*}

(*consts Rl :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"
axioms Rl_eq: "EQUIV Rl"

quotient ql = "'a list" / "Rl"
  by (rule Rl_eq)
ML {*
  ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "'a list"}) (Logic.varifyT @{typ "'a ql"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"});
  ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "nat \<times> nat"}) (Logic.varifyT @{typ "int"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"})
*}
*)


ML {*
fun negF absF = repF
  | negF repF = absF

fun get_fun_noexchange flag (rty, qty) lthy ty =
let
  fun get_fun_aux s fs_tys =
  let
    val (fs, tys) = split_list fs_tys
    val (otys, ntys) = split_list tys
    val oty = Type (s, otys)
    val nty = Type (s, ntys)
    val ftys = map (op -->) tys
  in
   (case (maps_lookup (ProofContext.theory_of lthy) s) of
      SOME info => (list_comb (Const (#mapfun info, ftys ---> (oty --> nty)), fs), (oty, nty))
    | NONE      => error ("no map association for type " ^ s))
  end

  fun get_fun_fun fs_tys =
  let
    val (fs, tys) = split_list fs_tys
    val ([oty1, oty2], [nty1, nty2]) = split_list tys
    val oty = nty1 --> oty2
    val nty = oty1 --> nty2
    val ftys = map (op -->) tys
  in
    (list_comb (Const (@{const_name "fun_map"}, ftys ---> oty --> nty), fs), (oty, nty))
  end

  val thy = ProofContext.theory_of lthy

  fun get_const flag (rty, qty) =
  let 
    val qty_name = Long_Name.base_name (fst (dest_Type qty))
  in
    case flag of
      absF => (Const (Sign.full_bname thy ("ABS_" ^ qty_name), rty --> qty), (rty, qty))
    | repF => (Const (Sign.full_bname thy ("REP_" ^ qty_name), qty --> rty), (qty, rty))
  end

  fun mk_identity ty = Abs ("", ty, Bound 0)

in
  if (Sign.typ_instance thy (ty, rty))
  then (get_const flag (ty, (exchange_ty lthy rty qty ty)))
  else (case ty of
          TFree _ => (mk_identity ty, (ty, ty))
        | Type (_, []) => (mk_identity ty, (ty, ty))
        | Type ("fun" , [ty1, ty2]) =>
                 get_fun_fun [get_fun_noexchange (negF flag) (rty, qty) lthy ty1,
                 get_fun_noexchange flag (rty, qty) lthy ty2]
        | Type (s, tys) => get_fun_aux s (map (get_fun_noexchange flag (rty, qty) lthy) tys)
        | _ => raise ERROR ("no type variables"))
end
fun get_fun_noex flag (rty, qty) lthy ty =
  fst (get_fun_noexchange flag (rty, qty) lthy ty)
*}

ML {*
fun find_matching_types rty ty =
  if Type.raw_instance (Logic.varifyT ty, rty)
  then [ty]
  else
    let val (s, tys) = dest_Type ty in
    flat (map (find_matching_types rty) tys)
    end
    handle TYPE _ => []
*}

ML {*
fun negF absF = repF
  | negF repF = absF

fun get_fun flag qenv lthy ty =
let
  
  fun get_fun_aux s fs =
   (case (maps_lookup (ProofContext.theory_of lthy) s) of
      SOME info => list_comb (Const (#mapfun info, dummyT), fs)
    | NONE      => error ("no map association for type " ^ s))

  fun get_const flag qty =
  let 
    val thy = ProofContext.theory_of lthy
    val qty_name = Long_Name.base_name (fst (dest_Type qty))
  in
    case flag of
      absF => Const (Sign.full_bname thy ("ABS_" ^ qty_name), dummyT)
    | repF => Const (Sign.full_bname thy ("REP_" ^ qty_name), dummyT)
  end

  fun mk_identity ty = Abs ("", ty, Bound 0)

in
  if (AList.defined (op=) qenv ty)
  then (get_const flag ty)
  else (case ty of
          TFree _ => mk_identity ty
        | Type (_, []) => mk_identity ty 
        | Type ("fun" , [ty1, ty2]) => 
            let
              val fs_ty1 = get_fun (negF flag) qenv lthy ty1
              val fs_ty2 = get_fun flag qenv lthy ty2
            in  
              get_fun_aux "fun" [fs_ty1, fs_ty2]
            end 
        | Type (s, tys) => get_fun_aux s (map (get_fun flag qenv lthy) tys)
        | _ => error ("no type variables allowed"))
end

(* returns all subterms where two types differ *)
fun diff (T, S) Ds =
  case (T, S) of
    (TVar v, TVar u) => if v = u then Ds else (T, S)::Ds 
  | (TFree x, TFree y) => if x = y then Ds else (T, S)::Ds
  | (Type (a, Ts), Type (b, Us)) => 
      if a = b then diffs (Ts, Us) Ds else (T, S)::Ds
  | _ => (T, S)::Ds
and diffs (T::Ts, U::Us) Ds = diffs (Ts, Us) (diff (T, U) Ds)
  | diffs ([], []) Ds = Ds
  | diffs _ _ = error "Unequal length of type arguments"

*}

ML {*
fun get_fun_OLD flag (rty, qty) lthy ty =
  let
    val tys = find_matching_types rty ty;
    val qenv = map (fn t => (exchange_ty lthy rty qty t, t)) tys;
    val xchg_ty = exchange_ty lthy rty qty ty
  in
    get_fun flag qenv lthy xchg_ty
  end
*}

(*
consts Rl :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"
axioms Rl_eq: "EQUIV Rl"

quotient ql = "'a list" / "Rl"
  by (rule Rl_eq)

ML {* val al = snd (dest_Free (term_of @{cpat "f :: ?'a list"})) *}
ML {* val aq = snd (dest_Free (term_of @{cpat "f :: ?'a ql"})) *}
ML {* val ttt = term_of @{cterm "f :: bool list \<Rightarrow> nat list"} *}

ML {*
  get_fun_noexchange absF (al, aq) @{context} (fastype_of ttt)
*}
ML {*
  get_fun_new absF al aq @{context} (fastype_of ttt)
*}
ML {*
  fun mk_abs tm =
    let
      val ty = fastype_of tm
    in (get_fun_noexchange absF (al, aq) @{context} ty) $ tm end
  fun mk_repabs tm =
    let
      val ty = fastype_of tm
    in (get_fun_noexchange repF (al, aq) @{context} ty) $ (mk_abs tm) end
*}
ML {*
  cterm_of @{theory} (mk_repabs ttt)
*}
*)

text {* Does the same as 'subst' in a given prop or theorem *}
ML {*
fun eqsubst_prop ctxt thms t =
  let
    val goalstate = Goal.init (cterm_of (ProofContext.theory_of ctxt) t)
    val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
      NONE => error "eqsubst_prop"
    | SOME th => cprem_of th 1
  in term_of a' end
*}

ML {*
  fun repeat_eqsubst_prop ctxt thms t =
    repeat_eqsubst_prop ctxt thms (eqsubst_prop ctxt thms t)
    handle _ => t
*}


ML {*
fun eqsubst_thm ctxt thms thm =
  let
    val goalstate = Goal.init (Thm.cprop_of thm)
    val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
      NONE => error "eqsubst_thm"
    | SOME th => cprem_of th 1
    val tac = (EqSubst.eqsubst_tac ctxt [0] thms 1) THEN simp_tac HOL_ss 1
    val goal = Logic.mk_equals (term_of (Thm.cprop_of thm), term_of a');
    val cgoal = cterm_of (ProofContext.theory_of ctxt) goal
    val rt = Goal.prove_internal [] cgoal (fn _ => tac);
  in
    @{thm Pure.equal_elim_rule1} OF [rt, thm]
  end
*}

ML {*
  fun repeat_eqsubst_thm ctxt thms thm =
    repeat_eqsubst_thm ctxt thms (eqsubst_thm ctxt thms thm)
    handle _ => thm
*}

(* Needed to have a meta-equality *)
lemma id_def_sym: "(\<lambda>x. x) \<equiv> id"
by (simp add: id_def)

(* TODO: can be also obtained with: *)
ML {* symmetric (eq_reflection OF @{thms id_def}) *}

ML {*
fun build_repabs_term lthy thm consts rty qty =
  let
    (* TODO: The rty and qty stored in the quotient_info should
       be varified, so this will soon not be needed *)
    val rty = Logic.varifyT rty;
    val qty = Logic.varifyT qty;

  fun mk_abs tm =
    let
      val ty = fastype_of tm
    in Syntax.check_term lthy ((get_fun_OLD absF (rty, qty) lthy ty) $ tm) end
  fun mk_repabs tm =
    let
      val ty = fastype_of tm
    in Syntax.check_term lthy ((get_fun_OLD repF (rty, qty) lthy ty) $ (mk_abs tm)) end

    fun is_lifted_const (Const (x, _)) = member (op =) consts x
      | is_lifted_const _ = false;

    fun build_aux lthy tm =
      case tm of
        Abs (a as (_, vty, _)) =>
          let
            val (vs, t) = Term.dest_abs a;
            val v = Free(vs, vty);
            val t' = lambda v (build_aux lthy t)
          in
            if (not (needs_lift rty (fastype_of tm))) then t'
            else mk_repabs (
              if not (needs_lift rty vty) then t'
              else
                let
                  val v' = mk_repabs v;
                  (* TODO: I believe 'beta' is not needed any more *)
                  val t1 = (* Envir.beta_norm *) (t' $ v')
                in
                  lambda v t1
                end)
          end
      | x =>
        case Term.strip_comb tm of
          (Const(@{const_name Respects}, _), _) => tm
        | (opp, tms0) =>
          let
            val tms = map (build_aux lthy) tms0
            val ty = fastype_of tm
          in
            if (is_lifted_const opp andalso needs_lift rty ty) then
            mk_repabs (list_comb (opp, tms))
            else if ((Term.is_Free opp) andalso (length tms > 0) andalso (needs_lift rty ty)) then
              mk_repabs (list_comb (opp, tms))
            else if tms = [] then opp
            else list_comb(opp, tms)
          end
  in
    repeat_eqsubst_prop lthy @{thms id_def_sym}
      (build_aux lthy (Thm.prop_of thm))
  end
*}

text {* Builds provable goals for regularized theorems *}
ML {*
fun build_repabs_goal ctxt thm cons rty qty =
  Logic.mk_equals ((Thm.prop_of thm), (build_repabs_term ctxt thm cons rty qty))
*}

ML {*
fun instantiate_tac thm = Subgoal.FOCUS (fn {concl, ...} =>
  let
    val pat = Drule.strip_imp_concl (cprop_of thm)
    val insts = Thm.match (pat, concl)
  in
    rtac (Drule.instantiate insts thm) 1
  end
  handle _ => no_tac)
*}

ML {*
fun CHANGED' tac = (fn i => CHANGED (tac i))
*}

ML {*
fun quotient_tac quot_thm =
  REPEAT_ALL_NEW (FIRST' [
    rtac @{thm FUN_QUOTIENT},
    rtac quot_thm,
    rtac @{thm IDENTITY_QUOTIENT},
    (* For functional identity quotients, (op = ---> op =) *)
    CHANGED' (
      (simp_tac (HOL_ss addsimps @{thms FUN_MAP_I})) THEN'
      rtac @{thm IDENTITY_QUOTIENT}
    )
  ])
*}

ML {*
fun LAMBDA_RES_TAC ctxt i st =
  (case (term_of o #concl o fst) (Subgoal.focus ctxt i st) of
    (_ $ (_ $ (Abs(_, _, _)) $ (Abs(_, _, _)))) =>
      (EqSubst.eqsubst_tac ctxt [0] @{thms FUN_REL.simps}) THEN'
      (rtac @{thm allI}) THEN' (rtac @{thm allI}) THEN' (rtac @{thm impI})
  | _ => fn _ => no_tac) i st
*}

ML {*
fun WEAK_LAMBDA_RES_TAC ctxt i st =
  (case (term_of o #concl o fst) (Subgoal.focus ctxt i st) of
    (_ $ (_ $ _ $ (Abs(_, _, _)))) =>
      (EqSubst.eqsubst_tac ctxt [0] @{thms FUN_REL.simps}) THEN'
      (rtac @{thm allI}) THEN' (rtac @{thm allI}) THEN' (rtac @{thm impI})
  | (_ $ (_ $ (Abs(_, _, _)) $ _)) =>
      (EqSubst.eqsubst_tac ctxt [0] @{thms FUN_REL.simps}) THEN'
      (rtac @{thm allI}) THEN' (rtac @{thm allI}) THEN' (rtac @{thm impI})
  | _ => fn _ => no_tac) i st
*}

ML {*
fun APPLY_RSP_TAC rty = Subgoal.FOCUS (fn {concl, ...} =>
  let
    val (_ $ (R $ (f $ _) $ (_ $ _))) = term_of concl;
    val pat = Drule.strip_imp_concl (cprop_of @{thm APPLY_RSP});
    val insts = Thm.match (pat, concl)
  in
    if needs_lift rty (type_of f) then
      rtac (Drule.instantiate insts @{thm APPLY_RSP}) 1
    else no_tac
  end
  handle _ => no_tac)
*}

ML {*
val ball_rsp_tac = Subgoal.FOCUS (fn {concl, context = ctxt, ...} =>
  let
    val _ $ (_ $ (Const (@{const_name Ball}, _) $ _) $
                 (Const (@{const_name Ball}, _) $ _)) = term_of concl
  in
    ((simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))
    THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN' rtac @{thm impI}
    THEN' instantiate_tac @{thm RES_FORALL_RSP} ctxt THEN'
    (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))) 1
  end
  handle _ => no_tac)
*}

ML {*
val bex_rsp_tac = Subgoal.FOCUS (fn {concl, context = ctxt, ...} =>
  let
    val _ $ (_ $ (Const (@{const_name Bex}, _) $ _) $
                 (Const (@{const_name Bex}, _) $ _)) = term_of concl
  in
    ((simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))
    THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN' rtac @{thm impI}
    THEN' instantiate_tac @{thm RES_EXISTS_RSP} ctxt THEN'
    (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))) 1
  end
  handle _ => no_tac)
*}

ML {*
fun SOLVES' tac = tac THEN_ALL_NEW (fn _ => no_tac)
*}

ML {*
fun r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms =
  (FIRST' [
    rtac trans_thm,
    LAMBDA_RES_TAC ctxt,
    ball_rsp_tac ctxt,
    bex_rsp_tac ctxt,
    FIRST' (map rtac rsp_thms),
    (instantiate_tac @{thm REP_ABS_RSP(1)} ctxt THEN' (RANGE [quotient_tac quot_thm])),
    rtac refl,
    (APPLY_RSP_TAC rty ctxt THEN' (RANGE [quotient_tac quot_thm, quotient_tac quot_thm])),
    Cong_Tac.cong_tac @{thm cong},
    rtac @{thm ext},
    rtac reflex_thm,
    atac,
    SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps})),
    WEAK_LAMBDA_RES_TAC ctxt,
    CHANGED' (asm_full_simp_tac (HOL_ss addsimps @{thms FUN_REL_EQ}))
    ])
*}

ML {*
fun repabs lthy thm consts rty qty quot_thm reflex_thm trans_thm rsp_thms =
  let
    val rt = build_repabs_term lthy thm consts rty qty;
    val rg = Logic.mk_equals ((Thm.prop_of thm), rt);
    fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN'
      (REPEAT_ALL_NEW (r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms));
    val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1);
  in
    @{thm Pure.equal_elim_rule1} OF [cthm, thm]
  end
*}

section {* Cleaning the goal *}

lemma prod_fun_id: "prod_fun id id \<equiv> id"
by (rule eq_reflection) (simp add: prod_fun_def)

lemma map_id: "map id \<equiv> id"
apply (rule eq_reflection)
apply (rule ext)
apply (rule_tac list="x" in list.induct)
apply (simp_all)
done

ML {*
fun simp_ids lthy thm =
  MetaSimplifier.rewrite_rule @{thms eq_reflection[OF FUN_MAP_I] eq_reflection[OF id_apply] id_def_sym prod_fun_id map_id} thm
*}

ML {*
fun simp_ids_trm trm =
  trm |>
  MetaSimplifier.rewrite false @{thms eq_reflection[OF FUN_MAP_I] eq_reflection[OF id_apply] id_def_sym prod_fun_id map_id}
  |> cprop_of |> Thm.dest_equals |> snd

*}

text {* expects atomized definition *}
ML {*
fun add_lower_defs_aux lthy thm =
  let
    val e1 = @{thm fun_cong} OF [thm];
    val f = eqsubst_thm lthy @{thms fun_map.simps} e1;
    val g = simp_ids lthy f
  in
    (simp_ids lthy thm) :: (add_lower_defs_aux lthy g)
  end
  handle _ => [simp_ids lthy thm]
*}

ML {*
fun add_lower_defs lthy def =
  let
    val def_pre_sym = symmetric def
    val def_atom = atomize_thm def_pre_sym
    val defs_all = add_lower_defs_aux lthy def_atom
  in
    map Thm.varifyT defs_all
  end
*}

(* TODO: Check if it behaves properly with varifyed rty *)
ML {*
fun findabs_all rty tm =
  case tm of
    Abs(_, T, b) =>
      let
        val b' = subst_bound ((Free ("x", T)), b);
        val tys = findabs_all rty b'
        val ty = fastype_of tm
      in if needs_lift rty ty then (ty :: tys) else tys
      end
  | f $ a => (findabs_all rty f) @ (findabs_all rty a)
  | _ => [];
fun findabs rty tm = distinct (op =) (findabs_all rty tm)
*}

ML {*
fun findaps_all rty tm =
  case tm of
    Abs(_, T, b) =>
      findaps_all rty (subst_bound ((Free ("x", T)), b))
  | (f $ a) => (findaps_all rty f @ findaps_all rty a)
  | Free (_, (T as (Type ("fun", (_ :: _))))) =>
      (if needs_lift rty T then [T] else [])
  | _ => [];
fun findaps rty tm = distinct (op =) (findaps_all rty tm)
*}

(* Currently useful only for LAMBDA_PRS *)
ML {*
fun make_simp_prs_thm lthy quot_thm thm typ =
  let
    val (_, [lty, rty]) = dest_Type typ;
    val thy = ProofContext.theory_of lthy;
    val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty)
    val inst = [SOME lcty, NONE, SOME rcty];
    val lpi = Drule.instantiate' inst [] thm;
    val tac =
      (compose_tac (false, lpi, 2)) THEN_ALL_NEW
      (quotient_tac quot_thm);
    val gc = Drule.strip_imp_concl (cprop_of lpi);
    val t = Goal.prove_internal [] gc (fn _ => tac 1)
  in
    MetaSimplifier.rewrite_rule [@{thm eq_reflection} OF @{thms id_apply}] t
  end
*}

ML {*
fun findallex_all rty qty tm =
  case tm of
    Const (@{const_name All}, T) $ (s as (Abs(_, _, b))) =>
      let
        val (tya, tye) = findallex_all rty qty s
      in if needs_lift rty T then
        ((T :: tya), tye)
      else (tya, tye) end
  | Const (@{const_name Ex}, T) $ (s as (Abs(_, _, b))) =>
      let
        val (tya, tye) = findallex_all rty qty s
      in if needs_lift rty T then
        (tya, (T :: tye))
      else (tya, tye) end
  | Abs(_, T, b) =>
      findallex_all rty qty (subst_bound ((Free ("x", T)), b))
  | f $ a =>
      let
        val (a1, e1) = findallex_all rty qty f;
        val (a2, e2) = findallex_all rty qty a;
      in (a1 @ a2, e1 @ e2) end
  | _ => ([], []);
*}

ML {*
fun findallex lthy rty qty tm =
  let
    val (a, e) = findallex_all rty qty tm;
    val (ad, ed) = (map domain_type a, map domain_type e);
    val (au, eu) = (distinct (op =) ad, distinct (op =) ed);
    val (rty, qty) = (Logic.varifyT rty, Logic.varifyT qty)
  in
    (map (exchange_ty lthy rty qty) au, map (exchange_ty lthy rty qty) eu)
  end
*}

ML {*
fun make_allex_prs_thm lthy quot_thm thm typ =
  let
    val (_, [lty, rty]) = dest_Type typ;
    val thy = ProofContext.theory_of lthy;
    val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty)
    val inst = [NONE, SOME lcty];
    val lpi = Drule.instantiate' inst [] thm;
    val tac =
      (compose_tac (false, lpi, 1)) THEN_ALL_NEW
      (quotient_tac quot_thm);
    val gc = Drule.strip_imp_concl (cprop_of lpi);
    val t = Goal.prove_internal [] gc (fn _ => tac 1)
    val t_noid = MetaSimplifier.rewrite_rule
      [@{thm eq_reflection} OF @{thms id_apply}] t;
    val t_sym = @{thm "HOL.sym"} OF [t_noid];
    val t_eq = @{thm "eq_reflection"} OF [t_sym]
  in
    t_eq
  end
*}

ML {*
fun applic_prs lthy rty qty absrep ty =
  let
    val rty = Logic.varifyT rty;
    val qty = Logic.varifyT qty;
    fun absty ty =
      exchange_ty lthy rty qty ty
    fun mk_rep tm =
      let
        val ty = exchange_ty lthy qty rty (fastype_of tm)
      in Syntax.check_term lthy ((get_fun_OLD repF (rty, qty) lthy ty) $ tm) end;
    fun mk_abs tm =
      let
        val ty = fastype_of tm
      in Syntax.check_term lthy ((get_fun_OLD absF (rty, qty) lthy ty) $ tm) end
    val (l, ltl) = Term.strip_type ty;
    val nl = map absty l;
    val vs = map (fn _ => "x") l;
    val ((fname :: vfs), lthy') = Variable.variant_fixes ("f" :: vs) lthy;
    val args = map Free (vfs ~~ nl);
    val lhs = list_comb((Free (fname, nl ---> ltl)), args);
    val rargs = map mk_rep args;
    val f = Free (fname, nl ---> ltl);
    val rhs = mk_abs (list_comb((mk_rep f), rargs));
    val eq = Logic.mk_equals (rhs, lhs);
    val ceq = cterm_of (ProofContext.theory_of lthy') eq;
    val sctxt = HOL_ss addsimps (absrep :: @{thms fun_map.simps});
    val t = Goal.prove_internal [] ceq (fn _ => simp_tac sctxt 1)
    val t_id = MetaSimplifier.rewrite_rule @{thms id_def_sym} t;
  in
    singleton (ProofContext.export lthy' lthy) t_id
  end
*}

ML {*
fun lookup_quot_data lthy qty =
  let
    val qty_name = fst (dest_Type qty)
    val SOME quotdata = quotdata_lookup lthy qty_name
                  (* cu: Changed the lookup\<dots>not sure whether this works *)
    (* TODO: Should no longer be needed *)
    val rty = Logic.unvarifyT (#rtyp quotdata)
    val rel = #rel quotdata
    val rel_eqv = #equiv_thm quotdata
    val rel_refl_pre = @{thm EQUIV_REFL} OF [rel_eqv]
    val rel_refl = @{thm spec} OF [MetaSimplifier.rewrite_rule [@{thm REFL_def}] rel_refl_pre]
  in
    (rty, rel, rel_refl, rel_eqv)
  end
*}

ML {*
fun lookup_quot_thms lthy qty_name =
  let
    val thy = ProofContext.theory_of lthy;
    val trans2 = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".R_trans2")
    val reps_same = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".REPS_same")
    val absrep = PureThy.get_thm thy ("QUOT_TYPE_I_" ^ qty_name ^ ".thm10")
    val quot = PureThy.get_thm thy ("QUOTIENT_" ^ qty_name)
  in
    (trans2, reps_same, absrep, quot)
  end
*}

ML {*
fun lookup_quot_consts defs =
  let
    fun dest_term (a $ b) = (a, b);
    val def_terms = map (snd o Logic.dest_equals o concl_of) defs;
  in
    map (fst o dest_Const o snd o dest_term) def_terms
  end
*}


ML {*
fun lift_thm lthy qty qty_name rsp_thms defs rthm = 
let
  val _ = tracing ("raw theorem:\n" ^ Syntax.string_of_term lthy (prop_of rthm))

  val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data lthy qty;
  val (trans2, reps_same, absrep, quot) = lookup_quot_thms lthy qty_name;
  val consts = lookup_quot_consts defs;
  val t_a = atomize_thm rthm;

  val _ = tracing ("raw atomized theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_a))

  val t_r = regularize t_a rty rel rel_eqv rel_refl lthy;

  val _ = tracing ("regularised theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_r))

  val t_t = repabs lthy t_r consts rty qty quot rel_refl trans2 rsp_thms;

  val _ = tracing ("rep/abs injected theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_t))

  val (alls, exs) = findallex lthy rty qty (prop_of t_a);
  val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls
  val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs
  val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t

  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_a))

  val abs = findabs rty (prop_of t_a);
  val aps = findaps rty (prop_of t_a);
  val app_prs_thms = map (applic_prs lthy rty qty absrep) aps;
  val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs;
  val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a;
  
  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_l))

  val defs_sym = flat (map (add_lower_defs lthy) defs);
  val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym;
  val t_id = simp_ids lthy t_l;

  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_id))

  val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id;

  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d0))

  val t_d = repeat_eqsubst_thm lthy defs_sym t_d0;

  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d))

  val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d;

  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_r))

  val t_rv = ObjectLogic.rulify t_r

  val _ = tracing ("lifted theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_rv))
in
  Thm.varifyT t_rv
end
*}

ML {*
fun lift_thm_note qty qty_name rsp_thms defs thm name lthy =
  let
    val lifted_thm = lift_thm lthy qty qty_name rsp_thms defs thm;
    val (_, lthy2) = note (name, lifted_thm) lthy;
  in
    lthy2
  end
*}

(******************************************)
(******************************************)
(* version with explicit qtrm             *)
(******************************************)
(******************************************)

ML {*
(* builds the relation for respects *)
 
fun mk_resp_arg lthy (rty, qty) =
let
  val thy = ProofContext.theory_of lthy
in  
  case (rty, qty) of
    (Type (s, tys), Type (s', tys')) =>
       if s = s' 
       then let
              val SOME map_info = maps_lookup thy s
              val args = map (mk_resp_arg lthy) (tys ~~ tys')
            in
              list_comb (Const (#relfun map_info, dummyT), args) 
            end  
       else let  
              val SOME qinfo = quotdata_lookup_thy thy s'
              (* FIXME: check in this case that the rty and qty *)
              (* FIXME: correspond to each other *)
            in
              #rel qinfo
            end
    | _ => HOLogic.eq_const dummyT 
           (* FIXME: do the types correspond to each other? *)
end
*}

ML {*
val mk_babs = Const (@{const_name "Babs"}, dummyT)
val mk_ball = Const (@{const_name "Ball"}, dummyT)
val mk_bex  = Const (@{const_name "Bex"}, dummyT)
val mk_resp = Const (@{const_name Respects}, dummyT)
*}

ML {*
fun trm_lift_error lthy rtrm qtrm =
let
  val rtrm_str = quote (Syntax.string_of_term lthy rtrm) 
  val qtrm_str = quote (Syntax.string_of_term lthy qtrm)
  val msg = ["The quotient theorem", qtrm_str, "and lifted theorem", rtrm_str, "do not match."]
in
  raise LIFT_MATCH (space_implode " " msg)
end 
*}

ML {*
(* - applies f to the subterm of an abstraction,   *)
(*   otherwise to the given term,                  *)
(* - used by REGUKARIZE, therefore abstracted      *)
(*   variables do not have to be treated specially *)

fun apply_subt f trm1 trm2 =
  case (trm1, trm2) of
    (Abs (x, T, t), Abs (x', T', t')) => Abs (x, T, f t t')
  | _ => f trm1 trm2

(* the major type of All and Ex quantifiers *)
fun qnt_typ ty = domain_type (domain_type ty)
*}

(*
Regularizing an rtrm means:
 - quantifiers over a type that needs lifting are replaced by
   bounded quantifiers, for example:
      \<forall>x. P     \<Longrightarrow>     \<forall>x \<in> (Respects R). P  /  All (Respects R) P

   the relation R is given by the rty and qty;
 
 - abstractions over a type that needs lifting are replaced
   by bounded abstractions:
      \<lambda>x. P     \<Longrightarrow>     Ball (Respects R) (\<lambda>x. P)

 - equalities over the type being lifted are replaced by
   corresponding relations:
      A = B     \<Longrightarrow>     A \<approx> B

   example with more complicated types of A, B:
      A = B     \<Longrightarrow>     (op = \<Longrightarrow> op \<approx>) A B
*)

ML {*
(* produces a regularized version of rtm      *)
(* - the result is still not completely typed *)
(* - does not need any special treatment of   *)
(*   bound variables                          *)

fun REGULARIZE_trm lthy rtrm qtrm =
  case (rtrm, qtrm) of
    (Abs (x, ty, t), Abs (x', ty', t')) =>
       let
         val subtrm = REGULARIZE_trm lthy t t'
       in     
         if ty = ty'
         then Abs (x, ty, subtrm)
         else mk_babs $ (mk_resp $ mk_resp_arg lthy (ty, ty')) $ subtrm
       end
  | (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
       let
         val subtrm = apply_subt (REGULARIZE_trm lthy) t t'
       in
         if ty = ty'
         then Const (@{const_name "All"}, ty) $ subtrm
         else mk_ball $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
       end
  | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
       let
         val subtrm = apply_subt (REGULARIZE_trm lthy) t t'
       in
         if ty = ty'
         then Const (@{const_name "Ex"}, ty) $ subtrm
         else mk_bex $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm
       end
  (* FIXME: Why is there a case for equality? Is it correct? *)
  | (Const (@{const_name "op ="}, ty) $ t, Const (@{const_name "op ="}, ty') $ t') =>
       let
         val subtrm = REGULARIZE_trm lthy t t'
       in
         if ty = ty'
         then Const (@{const_name "op ="}, ty) $ subtrm
         else mk_resp_arg lthy (ty, ty') $ subtrm
       end 
  | (t1 $ t2, t1' $ t2') =>
       (REGULARIZE_trm lthy t1 t1') $ (REGULARIZE_trm lthy t2 t2')
  | (Free (x, ty), Free (x', ty')) =>
       if x = x' 
       then rtrm     (* FIXME: check whether types corresponds *)
       else trm_lift_error lthy rtrm qtrm
  | (Bound i, Bound i') =>
       if i = i' 
       then rtrm 
       else trm_lift_error lthy rtrm qtrm
  | (Const (s, ty), Const (s', ty')) =>
       if s = s' andalso ty = ty'
       then rtrm
       else rtrm (* FIXME: check correspondence according to definitions *) 
  | _ => trm_lift_error lthy rtrm qtrm
*}

ML {*
fun mk_REGULARIZE_goal lthy rtrm qtrm =
  Logic.mk_implies (rtrm, Syntax.check_term lthy (REGULARIZE_trm lthy rtrm qtrm))
*}

(*
To prove that the old theorem implies the new one, we first
atomize it and then try:

 - Reflexivity of the relation
 - Assumption
 - Elimnating quantifiers on both sides of toplevel implication
 - Simplifying implications on both sides of toplevel implication
 - Ball (Respects ?E) ?P = All ?P
 - (\<And>x. ?R x \<Longrightarrow> ?P x \<longrightarrow> ?Q x) \<Longrightarrow> All ?P \<longrightarrow> Ball ?R ?Q

*)

lemma my_equiv_res_forall2:
  fixes P::"'a \<Rightarrow> bool"
  fixes Q::"'b \<Rightarrow> bool"
  assumes a: "(All Q) \<longrightarrow> (All P)"
  shows "(All Q) \<longrightarrow> Ball (Respects E) P"
using a by auto

lemma my_equiv_res_exists:
  fixes P::"'a \<Rightarrow> bool"
  fixes Q::"'b \<Rightarrow> bool"
  assumes a: "EQUIV E"
  and     b: "(Ex Q) \<longrightarrow> (Ex P)"
  shows "(Ex Q) \<longrightarrow> Bex (Respects E) P"
apply(subst equiv_res_exists)
apply(rule a)
apply(rule b)
done

ML {*
(* FIXME: get_rid of rel_refl rel_eqv *)
fun REGULARIZE_tac lthy rel_refl rel_eqv =
   (REPEAT1 o FIRST1) 
     [rtac rel_refl,
      atac,
      rtac @{thm universal_twice},
      rtac @{thm impI} THEN' atac,
      rtac @{thm implication_twice},
      rtac @{thm my_equiv_res_forall2},
      rtac (rel_eqv RS @{thm my_equiv_res_exists}),
      (* For a = b \<longrightarrow> a \<approx> b *)
      rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl,
      rtac @{thm RIGHT_RES_FORALL_REGULAR}]
*}

(* version of REGULARIZE_tac including debugging information *)
ML {*
fun my_print_tac ctxt s thm =
let
  val prems_str = prems_of thm
                  |> map (Syntax.string_of_term ctxt)
                  |> cat_lines
  val _ = tracing (s ^ "\n" ^ prems_str)
in
  Seq.single thm
end
 
fun DT ctxt s tac = EVERY' [tac, K (my_print_tac ctxt ("after " ^ s))]
*}

ML {*
fun REGULARIZE_tac' lthy rel_refl rel_eqv =
   (REPEAT1 o FIRST1) 
     [(K (print_tac "start")) THEN' (K no_tac), 
      DT lthy "1" (rtac rel_refl),
      DT lthy "2" atac,
      DT lthy "3" (rtac @{thm universal_twice}),
      DT lthy "4" (rtac @{thm impI} THEN' atac),
      DT lthy "5" (rtac @{thm implication_twice}),
      DT lthy "6" (rtac @{thm my_equiv_res_forall2}),
      DT lthy "7" (rtac (rel_eqv RS @{thm my_equiv_res_exists})),
      (* For a = b \<longrightarrow> a \<approx> b *)
      DT lthy "8" (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
      DT lthy "9" (rtac @{thm RIGHT_RES_FORALL_REGULAR})]
*}

ML {*
fun REGULARIZE_prove rtrm qtrm rel_eqv rel_refl lthy =
  let
    val goal = mk_REGULARIZE_goal lthy rtrm qtrm
  in
    Goal.prove lthy [] [] goal 
      (fn {context, ...} => REGULARIZE_tac' context rel_refl rel_eqv)
  end
*}


end