(* Nominal Function Common
Author: Christian Urban
heavily based on the code of Alexander Krauss
(code forked on 5 June 2011)
Redefinition of config datatype
*)
signature NOMINAL_FUNCTION_DATA =
sig
type nominal_info =
{is_partial : bool,
defname : string,
(* contains no logical entities: invariant under morphisms: *)
add_simps : (binding -> binding) -> string -> (binding -> binding) ->
Attrib.src list -> thm list -> local_theory -> thm list * local_theory,
case_names : string list,
fs : term list,
R : term,
psimps: thm list,
pinducts: thm list,
simps : thm list option,
inducts : thm list option,
termination: thm,
eqvts: thm list}
end
structure Nominal_Function_Common =
struct
type nominal_info =
{is_partial : bool,
defname : string,
(* contains no logical entities: invariant under morphisms: *)
add_simps : (binding -> binding) -> string -> (binding -> binding) ->
Attrib.src list -> thm list -> local_theory -> thm list * local_theory,
case_names : string list,
fs : term list,
R : term,
psimps: thm list,
pinducts: thm list,
simps : thm list option,
inducts : thm list option,
termination: thm,
eqvts: thm list}
fun morph_function_data ({add_simps, case_names, fs, R, psimps, pinducts,
simps, inducts, termination, defname, is_partial, eqvts} : nominal_info) phi =
let
val term = Morphism.term phi val thm = Morphism.thm phi val fact = Morphism.fact phi
val name = Binding.name_of o Morphism.binding phi o Binding.name
in
{ add_simps = add_simps, case_names = case_names,
fs = map term fs, R = term R, psimps = fact psimps,
pinducts = fact pinducts, simps = Option.map fact simps,
inducts = Option.map fact inducts, termination = thm termination,
defname = name defname, is_partial=is_partial, eqvts = fact eqvts }
end
structure NominalFunctionData = Generic_Data
(
type T = (term * nominal_info) Item_Net.T;
val empty : T = Item_Net.init (op aconv o pairself fst) (single o fst);
val extend = I;
fun merge tabs : T = Item_Net.merge tabs;
)
val get_function = NominalFunctionData.get o Context.Proof;
fun lift_morphism thy f =
let
val term = Drule.term_rule thy f
in
Morphism.thm_morphism f $> Morphism.term_morphism term
$> Morphism.typ_morphism (Logic.type_map term)
end
fun import_function_data t ctxt =
let
val thy = Proof_Context.theory_of ctxt
val ct = cterm_of thy t
val inst_morph = lift_morphism thy o Thm.instantiate
fun match (trm, data) =
SOME (morph_function_data data (inst_morph (Thm.match (cterm_of thy trm, ct))))
handle Pattern.MATCH => NONE
in
get_first match (Item_Net.retrieve (get_function ctxt) t)
end
fun import_last_function ctxt =
case Item_Net.content (get_function ctxt) of
[] => NONE
| (t, data) :: _ =>
let
val ([t'], ctxt') = Variable.import_terms true [t] ctxt
in
import_function_data t' ctxt'
end
val all_function_data = Item_Net.content o get_function
fun add_function_data (data : nominal_info as {fs, termination, ...}) =
NominalFunctionData.map (fold (fn f => Item_Net.update (f, data)) fs)
#> Function_Common.store_termination_rule termination
(* Configuration management *)
datatype nominal_function_opt
= Sequential
| Default of string
| DomIntros
| No_Partials
| Invariant of string
datatype nominal_function_config = NominalFunctionConfig of
{sequential: bool,
default: string option,
domintros: bool,
partials: bool,
inv: string option}
fun apply_opt Sequential (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=true, default=default, domintros=domintros, partials=partials, inv=inv}
| apply_opt (Default d) (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=SOME d, domintros=domintros, partials=partials, inv=inv}
| apply_opt DomIntros (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=default, domintros=true, partials=partials, inv=inv}
| apply_opt No_Partials (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=default, domintros=domintros, partials=false, inv=inv}
| apply_opt (Invariant s) (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=default, domintros=domintros, partials=partials, inv = SOME s}
val nominal_default_config =
NominalFunctionConfig { sequential=false, default=NONE,
domintros=false, partials=true, inv=NONE}
datatype nominal_function_result = NominalFunctionResult of
{fs: term list,
G: term,
R: term,
psimps : thm list,
simple_pinducts : thm list,
cases : thm,
termination : thm,
domintros : thm list option,
eqvts : thm list}
end