theory AbsRepTest
imports "../QuotMain" "../QuotList" "../QuotOption" "../QuotSum" "../QuotProd" List
begin
ML {* open Quotient_Term *}
ML {*
fun test_funs flag ctxt (rty, qty) =
(absrep_fun_chk flag ctxt (rty, qty)
|> Syntax.string_of_term ctxt
|> writeln;
equiv_relation_chk ctxt (rty, qty)
|> Syntax.string_of_term ctxt
|> writeln;
new_equiv_relation_chk ctxt (rty, qty)
|> Syntax.string_of_term ctxt
|> writeln)
*}
definition
erel1 (infixl "\<approx>1" 50)
where
"erel1 \<equiv> \<lambda>xs ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
quotient_type
'a fset = "'a list" / erel1
apply(rule equivpI)
unfolding erel1_def reflp_def symp_def transp_def
by auto
definition
erel2 (infixl "\<approx>2" 50)
where
"erel2 \<equiv> \<lambda>(xs::('a * 'a) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
quotient_type
'a foo = "('a * 'a) list" / erel2
apply(rule equivpI)
unfolding erel2_def reflp_def symp_def transp_def
by auto
definition
erel3 (infixl "\<approx>3" 50)
where
"erel3 \<equiv> \<lambda>(xs::('a * int) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
quotient_type
'a bar = "('a * int) list" / "erel3"
apply(rule equivpI)
unfolding erel3_def reflp_def symp_def transp_def
by auto
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infixl "\<approx>4" 50)
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient_type myint = "nat \<times> nat" / intrel
by (auto simp add: equivp_def expand_fun_eq)
ML {*
test_funs absF @{context}
(@{typ "nat \<times> nat"},
@{typ "myint"})
*}
ML {*
test_funs absF @{context}
(@{typ "('a * 'a) list"},
@{typ "'a foo"})
*}
ML {*
test_funs repF @{context}
(@{typ "(('a * 'a) list * 'b)"},
@{typ "('a foo * 'b)"})
*}
ML {*
test_funs absF @{context}
(@{typ "(('a list) * int) list"},
@{typ "('a fset) bar"})
*}
ML {*
test_funs absF @{context}
(@{typ "('a list)"},
@{typ "('a fset)"})
*}
ML {*
test_funs absF @{context}
(@{typ "('a list) list"},
@{typ "('a fset) fset"})
*}
ML {*
test_funs absF @{context}
(@{typ "(('a * 'a) list) list"},
@{typ "(('a * 'a) fset) fset"})
*}
ML {*
test_funs absF @{context}
(@{typ "(nat * nat) list"},
@{typ "myint fset"})
*}
ML {*
test_funs absF @{context}
(@{typ "('a list) list \<Rightarrow> 'a list"},
@{typ "('a fset) fset \<Rightarrow> 'a fset"})
*}
lemma
assumes sr: "symp r"
and ss: "symp s"
shows "(r OO s) x y = (s OO r) y x"
using sr ss
unfolding symp_def
apply (metis pred_comp.intros pred_compE ss symp_def)
done
lemma abs_o_rep:
assumes a: "Quotient r absf repf"
shows "absf o repf = id"
apply(rule ext)
apply(simp add: Quotient_abs_rep[OF a])
done
lemma bla:
assumes a1: "Quotient (op \<approx>1) abs_fset rep_fset"
and a2: "Quotient r2 abs2 rep2"
shows "Quotient ((list_rel r2) OO (op \<approx>1) OO (list_rel r2)) (abs_fset \<circ> (map abs2)) ((map rep2) \<circ> rep_fset)"
unfolding Quotient_def comp_def
apply (rule)+
apply (simp add: abs_o_rep[OF a2] id_simps Quotient_abs_rep[OF Quotient_fset])
apply (rule)
apply (rule)
sledgehammer
apply (metis Quotient_def a2 equivp_reflp fset_equivp list_quotient list_rel_rel pred_comp.cases pred_comp.intros rep_fset_def)
using a1
apply -
sorry
lemma bla2:
assumes a2: "Quotient r1 abs1 rep_fset"
and "Quotient r2 abs2 rep2"
shows "Quotient ((list_rel r2) OO r1 OO (list_rel r2)) (abs1 \<circ> (map abs2)) ((map rep2) \<circ> rep_fset)"
sorry
thm bla [OF Quotient_fset]
thm bla2[OF Quotient_fset]
thm bla [OF Quotient_fset Quotient_fset]
thm bla2[OF Quotient_fset Quotient_fset]
lemma bla:
assumes a1: "Quotient r1 abs1 rep1"
and a2: "Quotient r2 abs2 rep2"
shows "Quotient r2 (abs1 \<circ> abs2) (rep2 \<circ> rep1)"
sorry
unfolding Quotient_def
apply auto
term rep_fset
lemma
assumes sr: "equivp r"
and ss: "equivp s"
shows "r OO s = s OO r"
apply(rule ext)
apply(rule ext)
using sr ss
nitpick
apply(auto)
apply(rule pred_compI)
definition
relation_compose
where
"relation_compose R1 R2 = \<lambda>x y. \<exists> z. (R1 x z \<and> R2 z y)"
end