(* Title: nominal_dt_alpha.ML
Author: Christian Urban
Author: Cezary Kaliszyk
Performing quotient constructions, lifting theorems and
deriving support properties for the quotient types.
*)
signature NOMINAL_DT_QUOT =
sig
val define_qtypes: (string list * binding * mixfix) list -> typ list -> term list ->
thm list -> local_theory -> Quotient_Info.quotdata_info list * local_theory
val define_qconsts: typ list -> (string * term * mixfix) list -> local_theory ->
Quotient_Info.qconsts_info list * local_theory
val define_qperms: typ list -> string list -> (string * sort) list ->
(string * term * mixfix) list -> thm list -> local_theory -> local_theory
val define_qsizes: typ list -> string list -> (string * sort) list ->
(string * term * mixfix) list -> local_theory -> local_theory
val lift_thms: typ list -> thm list -> thm list -> Proof.context -> thm list * Proof.context
val prove_supports: Proof.context -> thm list -> term list -> thm list
val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list
val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->
local_theory -> local_theory
val prove_fv_supp: typ list -> term list -> term list -> term list -> term list -> thm list ->
thm list -> thm list -> thm list -> thm -> bclause list list -> Proof.context -> thm list
val prove_bns_finite: typ list -> term list -> thm -> thm list -> Proof.context -> thm list
val prove_perm_bn_alpha_thms: typ list -> term list -> term list -> thm -> thm list -> thm list ->
thm list -> Proof.context -> thm list
val prove_permute_bn_thms: typ list -> term list -> term list -> thm -> thm list -> thm list ->
thm list -> Proof.context -> thm list
val prove_strong_exhausts: Proof.context -> thm list -> bclause list list list -> thm list ->
thm list -> thm list -> thm list -> thm list -> thm list
val prove_strong_induct: Proof.context -> thm -> thm list -> thm list -> bclause list list list ->
thm list
end
structure Nominal_Dt_Quot: NOMINAL_DT_QUOT =
struct
fun lookup xs x = the (AList.lookup (op=) xs x)
(* defines the quotient types *)
fun define_qtypes qtys_descr alpha_tys alpha_trms alpha_equivp_thms lthy =
let
val qty_args1 = map2 (fn ty => fn trm => (ty, trm, false)) alpha_tys alpha_trms
val qty_args2 = (qtys_descr ~~ qty_args1) ~~ alpha_equivp_thms
in
fold_map Quotient_Type.add_quotient_type qty_args2 lthy
end
(* defines quotient constants *)
fun define_qconsts qtys consts_specs lthy =
let
val (qconst_infos, lthy') =
fold_map (Quotient_Def.lift_raw_const qtys) consts_specs lthy
val phi = ProofContext.export_morphism lthy' lthy
in
(map (Quotient_Info.transform_qconsts phi) qconst_infos, lthy')
end
(* defines the quotient permutations and proves pt-class *)
fun define_qperms qtys qfull_ty_names tvs perm_specs raw_perm_laws lthy =
let
val lthy1 =
lthy
|> Local_Theory.exit_global
|> Class.instantiation (qfull_ty_names, tvs, @{sort pt})
val (qs, lthy2) = define_qconsts qtys perm_specs lthy1
val ((_, raw_perm_laws'), lthy3) = Variable.importT raw_perm_laws lthy2
val lifted_perm_laws =
map (Quotient_Tacs.lifted lthy3 qtys []) raw_perm_laws'
|> Variable.exportT lthy3 lthy2
fun tac _ =
Class.intro_classes_tac [] THEN
(ALLGOALS (resolve_tac lifted_perm_laws))
in
lthy2
|> Class.prove_instantiation_exit tac
|> Named_Target.theory_init
end
(* defines the size functions and proves size-class *)
fun define_qsizes qtys qfull_ty_names tvs size_specs lthy =
let
val tac = K (Class.intro_classes_tac [])
in
lthy
|> Local_Theory.exit_global
|> Class.instantiation (qfull_ty_names, tvs, @{sort size})
|> snd o (define_qconsts qtys size_specs)
|> Class.prove_instantiation_exit tac
|> Named_Target.theory_init
end
(* lifts a theorem and cleans all "_raw" parts
from variable names *)
local
val any = Scan.one (Symbol.not_eof)
val raw = Scan.this_string "_raw"
val exclude =
Scan.repeat (Scan.unless raw any) --| raw >> implode
val parser = Scan.repeat (exclude || any)
in
fun unraw_str s =
s |> raw_explode
|> Scan.finite Symbol.stopper parser >> implode
|> fst
end
fun unraw_vars_thm thm =
let
fun unraw_var_str ((s, i), T) = ((unraw_str s, i), T)
val vars = Term.add_vars (prop_of thm) []
val vars' = map (Var o unraw_var_str) vars
in
Thm.certify_instantiate ([], (vars ~~ vars')) thm
end
fun unraw_bounds_thm th =
let
val trm = Thm.prop_of th
val trm' = Term.map_abs_vars unraw_str trm
in
Thm.rename_boundvars trm trm' th
end
fun lift_thms qtys simps thms ctxt =
(map (Quotient_Tacs.lifted ctxt qtys simps
#> unraw_bounds_thm
#> unraw_vars_thm
#> Drule.zero_var_indexes) thms, ctxt)
fun mk_supports_goal ctxt qtrm =
let
val vs = fresh_args ctxt qtrm
val rhs = list_comb (qtrm, vs)
val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
|> mk_supp
in
mk_supports lhs rhs
|> HOLogic.mk_Trueprop
end
fun supports_tac ctxt perm_simps =
let
val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
in
EVERY' [ simp_tac ss1,
Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
simp_tac ss2 ]
end
fun prove_supports_single ctxt perm_simps qtrm =
let
val goal = mk_supports_goal ctxt qtrm
val ctxt' = Variable.auto_fixes goal ctxt
in
Goal.prove ctxt' [] [] goal
(K (HEADGOAL (supports_tac ctxt perm_simps)))
|> singleton (ProofContext.export ctxt' ctxt)
end
fun prove_supports ctxt perm_simps qtrms =
map (prove_supports_single ctxt perm_simps) qtrms
(* finite supp lemmas for qtypes *)
fun prove_fsupp ctxt qtys qinduct qsupports_thms =
let
val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
val goals = vs ~~ qtys
|> map Free
|> map (mk_finite o mk_supp)
|> foldr1 (HOLogic.mk_conj)
|> HOLogic.mk_Trueprop
val tac =
EVERY' [ rtac @{thm supports_finite},
resolve_tac qsupports_thms,
asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
in
Goal.prove ctxt' [] [] goals
(K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
|> singleton (ProofContext.export ctxt' ctxt)
|> Datatype_Aux.split_conj_thm
|> map zero_var_indexes
end
(* finite supp instances *)
fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
let
val lthy1 =
lthy
|> Local_Theory.exit_global
|> Class.instantiation (qfull_ty_names, tvs, @{sort fs})
fun tac _ =
Class.intro_classes_tac [] THEN
(ALLGOALS (resolve_tac qfsupp_thms))
in
lthy1
|> Class.prove_instantiation_exit tac
|> Named_Target.theory_init
end
(* proves that fv and fv_bn equals supp *)
fun gen_mk_goals fv supp =
let
val arg_ty =
fastype_of fv
|> domain_type
in
(arg_ty, fn x => HOLogic.mk_eq (fv $ x, supp x))
end
fun mk_fvs_goals fv = gen_mk_goals fv mk_supp
fun mk_fv_bns_goals fv_bn alpha_bn = gen_mk_goals fv_bn (mk_supp_rel alpha_bn)
fun add_ss thms =
HOL_basic_ss addsimps thms
fun symmetric thms =
map (fn thm => thm RS @{thm sym}) thms
val supp_Abs_set = @{thms supp_Abs(1)[symmetric]}
val supp_Abs_res = @{thms supp_Abs(2)[symmetric]}
val supp_Abs_lst = @{thms supp_Abs(3)[symmetric]}
fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_set
| mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_res
| mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_lst
fun mk_supp_abs_tac ctxt [] = []
| mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
| mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
fun mk_bn_supp_abs_tac trm =
trm
|> fastype_of
|> body_type
|> (fn ty => case ty of
@{typ "atom set"} => simp_tac (add_ss supp_Abs_set)
| @{typ "atom list"} => simp_tac (add_ss supp_Abs_lst)
| _ => raise TERM ("mk_bn_supp_abs_tac", [trm]))
val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel_def permute_prod_def
prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] finite.emptyI}
fun prove_fv_supp qtys qtrms fvs fv_bns alpha_bns fv_simps eq_iffs perm_simps
fv_bn_eqvts qinduct bclausess ctxt =
let
val goals1 = map mk_fvs_goals fvs
val goals2 = map2 mk_fv_bns_goals fv_bns alpha_bns
fun tac ctxt =
SUBGOAL (fn (goal, i) =>
let
val (fv_fun, arg) =
goal |> Envir.eta_contract
|> Logic.strip_assums_concl
|> HOLogic.dest_Trueprop
|> fst o HOLogic.dest_eq
|> dest_comb
val supp_abs_tac =
case (AList.lookup (op=) (qtrms ~~ bclausess) (head_of arg)) of
SOME bclauses => EVERY' (mk_supp_abs_tac ctxt bclauses)
| NONE => mk_bn_supp_abs_tac fv_fun
in
EVERY' [ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
TRY o supp_abs_tac,
TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [],
TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
TRY o asm_full_simp_tac (add_ss thms3),
TRY o simp_tac (add_ss thms2),
TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts)))] i
end)
in
induct_prove qtys (goals1 @ goals2) qinduct tac ctxt
|> map atomize
|> map (simplify (HOL_basic_ss addsimps @{thms fun_eq_iff[symmetric]}))
end
fun prove_bns_finite qtys qbns qinduct qbn_simps ctxt =
let
fun mk_goal qbn =
let
val arg_ty = domain_type (fastype_of qbn)
val finite = @{term "finite :: atom set => bool"}
in
(arg_ty, fn x => finite $ (to_set (qbn $ x)))
end
val props = map mk_goal qbns
val ss_tac = asm_full_simp_tac (HOL_basic_ss addsimps (qbn_simps @
@{thms set.simps set_append finite_insert finite.emptyI finite_Un}))
in
induct_prove qtys props qinduct (K ss_tac) ctxt
end
fun prove_perm_bn_alpha_thms qtys qperm_bns alpha_bns qinduct qperm_bn_simps qeq_iffs qalpha_refls ctxt =
let
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
fun mk_goal qperm_bn alpha_bn =
let
val arg_ty = domain_type (fastype_of alpha_bn)
in
(arg_ty, fn x => (mk_id (Abs ("", arg_ty, alpha_bn $ Bound 0 $ (qperm_bn $ p $ Bound 0)))) $ x)
end
val props = map2 mk_goal qperm_bns alpha_bns
val ss = @{thm id_def}::qperm_bn_simps @ qeq_iffs @ qalpha_refls
val ss_tac = asm_full_simp_tac (HOL_ss addsimps ss)
in
induct_prove qtys props qinduct (K ss_tac) ctxt'
|> ProofContext.export ctxt' ctxt
|> map (simplify (HOL_basic_ss addsimps @{thms id_def}))
end
fun prove_permute_bn_thms qtys qbns qperm_bns qinduct qperm_bn_simps qbn_defs qbn_eqvts ctxt =
let
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
fun mk_goal qbn qperm_bn =
let
val arg_ty = domain_type (fastype_of qbn)
in
(arg_ty, fn x =>
(mk_id (Abs ("", arg_ty,
HOLogic.mk_eq (mk_perm p (qbn $ Bound 0), qbn $ (qperm_bn $ p $ Bound 0)))) $ x))
end
val props = map2 mk_goal qbns qperm_bns
val ss = @{thm id_def}::qperm_bn_simps @ qbn_defs
val ss_tac =
EVERY' [asm_full_simp_tac (HOL_basic_ss addsimps ss),
TRY o Nominal_Permeq.eqvt_strict_tac ctxt' qbn_eqvts [],
TRY o asm_full_simp_tac HOL_basic_ss]
in
induct_prove qtys props qinduct (K ss_tac) ctxt'
|> ProofContext.export ctxt' ctxt
|> map (simplify (HOL_basic_ss addsimps @{thms id_def}))
end
(*** proves strong exhauts theorems ***)
(* fixme: move into nominal_library *)
fun abs_const bmode ty =
let
val (const_name, binder_ty, abs_ty) =
case bmode of
Lst => (@{const_name "Abs_lst"}, @{typ "atom list"}, @{type_name abs_lst})
| Set => (@{const_name "Abs_set"}, @{typ "atom set"}, @{type_name abs_set})
| Res => (@{const_name "Abs_res"}, @{typ "atom set"}, @{type_name abs_res})
in
Const (const_name, [binder_ty, ty] ---> Type (abs_ty, [ty]))
end
fun mk_abs bmode trm1 trm2 =
abs_const bmode (fastype_of trm2) $ trm1 $ trm2
fun is_abs_eq thm =
let
fun is_abs trm =
case (head_of trm) of
Const (@{const_name "Abs_set"}, _) => true
| Const (@{const_name "Abs_lst"}, _) => true
| Const (@{const_name "Abs_res"}, _) => true
| _ => false
in
thm |> prop_of
|> HOLogic.dest_Trueprop
|> HOLogic.dest_eq
|> fst
|> is_abs
end
(* adds a freshness condition to the assumptions *)
fun mk_ecase_prems lthy c (params, prems, concl) bclauses =
let
val tys = map snd params
val binders = get_all_binders bclauses
fun prep_binder (opt, i) =
let
val t = Bound (length tys - i - 1)
in
case opt of
NONE => setify_ty lthy (nth tys i) t
| SOME bn => to_set_ty (fastype_of1 (tys, bn $ t)) (bn $ t)
end
val prems' =
case binders of
[] => prems (* case: no binders *)
| _ => binders (* case: binders *)
|> map prep_binder
|> fold_union_env tys
|> (fn t => mk_fresh_star t c)
|> (fn t => HOLogic.mk_Trueprop t :: prems)
in
mk_full_horn params prems' concl
end
(* derives the freshness theorem that there exists a p, such that
(p o as) #* (c, t1,..., tn) *)
fun fresh_thm ctxt c parms binders bn_finite_thms =
let
fun prep_binder (opt, i) =
case opt of
NONE => setify ctxt (nth parms i)
| SOME bn => to_set (bn $ (nth parms i))
fun prep_binder2 (opt, i) =
case opt of
NONE => atomify ctxt (nth parms i)
| SOME bn => bn $ (nth parms i)
val rhs = HOLogic.mk_tuple ([c] @ parms @ (map prep_binder2 binders))
val lhs = binders
|> map prep_binder
|> fold_union
|> mk_perm (Bound 0)
val goal = mk_fresh_star lhs rhs
|> mk_exists ("p", @{typ perm})
|> HOLogic.mk_Trueprop
val ss = bn_finite_thms @ @{thms supp_Pair finite_supp finite_sets_supp}
@ @{thms finite.intros finite_Un finite_set finite_fset}
in
Goal.prove ctxt [] [] goal
(K (HEADGOAL (rtac @{thm at_set_avoiding1}
THEN_ALL_NEW (simp_tac (HOL_ss addsimps ss)))))
end
(* derives an abs_eq theorem of the form
Exists q. [as].x = [p o as].(q o x) for non-recursive binders
Exists q. [as].x = [q o as].(q o x) for recursive binders
*)
fun abs_eq_thm ctxt fprops p parms bn_finite_thms bn_eqvt permute_bns
(bclause as (BC (bmode, binders, bodies))) =
case binders of
[] => []
| _ =>
let
val rec_flag = is_recursive_binder bclause
val binder_trm = comb_binders ctxt bmode parms binders
val body_trm = foldl1 HOLogic.mk_prod (map (nth parms) bodies)
val abs_lhs = mk_abs bmode binder_trm body_trm
val abs_rhs =
if rec_flag
then mk_abs bmode (mk_perm (Bound 0) binder_trm) (mk_perm (Bound 0) body_trm)
else mk_abs bmode (mk_perm p binder_trm) (mk_perm (Bound 0) body_trm)
val abs_eq = HOLogic.mk_eq (abs_lhs, abs_rhs)
val peq = HOLogic.mk_eq (mk_perm (Bound 0) binder_trm, mk_perm p binder_trm)
val goal = HOLogic.mk_conj (abs_eq, peq)
|> (fn t => HOLogic.mk_exists ("q", @{typ "perm"}, t))
|> HOLogic.mk_Trueprop
val ss = fprops @ bn_finite_thms @ @{thms set.simps set_append union_eqvt}
@ @{thms fresh_star_Un fresh_star_Pair fresh_star_list fresh_star_singleton fresh_star_fset
fresh_star_set} @ @{thms finite.intros finite_fset}
val tac1 =
if rec_flag
then resolve_tac @{thms Abs_rename_set' Abs_rename_res' Abs_rename_lst'}
else resolve_tac @{thms Abs_rename_set Abs_rename_res Abs_rename_lst}
val tac2 = EVERY' [simp_tac (HOL_basic_ss addsimps ss), TRY o simp_tac HOL_ss]
in
[ Goal.prove ctxt [] [] goal (K (HEADGOAL (tac1 THEN_ALL_NEW tac2)))
|> (if rec_flag
then Nominal_Permeq.eqvt_strict_rule ctxt bn_eqvt []
else Nominal_Permeq.eqvt_strict_rule ctxt permute_bns []) ]
end
val setify = @{lemma "xs = ys ==> set xs = set ys" by simp}
fun case_tac ctxt c bn_finite_thms eq_iff_thms bn_eqvt permute_bns perm_bn_alphas
prems bclausess qexhaust_thm =
let
fun aux_tac prem bclauses =
case (get_all_binders bclauses) of
[] => EVERY' [rtac prem, atac]
| binders => Subgoal.SUBPROOF (fn {params, prems, concl, context = ctxt, ...} =>
let
val parms = map (term_of o snd) params
val fthm = fresh_thm ctxt c parms binders bn_finite_thms
val ss = @{thms fresh_star_Pair union_eqvt fresh_star_Un}
val (([(_, fperm)], fprops), ctxt') = Obtain.result
(K (EVERY1 [etac exE,
full_simp_tac (HOL_basic_ss addsimps ss),
REPEAT o (etac @{thm conjE})])) [fthm] ctxt
val abs_eq_thms = flat
(map (abs_eq_thm ctxt fprops (term_of fperm) parms bn_finite_thms bn_eqvt permute_bns) bclauses)
val ((_, eqs), ctxt'') = Obtain.result
(K (EVERY1
[ REPEAT o (etac @{thm exE}),
REPEAT o (etac @{thm conjE}),
REPEAT o (dtac setify),
full_simp_tac (HOL_basic_ss addsimps @{thms set_append set.simps})])) abs_eq_thms ctxt'
val (abs_eqs, peqs) = split_filter is_abs_eq eqs
val fprops' =
map (Nominal_Permeq.eqvt_strict_rule ctxt permute_bns []) fprops
@ map (Nominal_Permeq.eqvt_strict_rule ctxt bn_eqvt []) fprops
(* for freshness conditions *)
val tac1 = SOLVED' (EVERY'
[ simp_tac (HOL_basic_ss addsimps peqs),
rewrite_goal_tac (@{thms fresh_star_Un[THEN eq_reflection]}),
conj_tac (DETERM o resolve_tac fprops') ])
(* for equalities between constructors *)
val tac2 = SOLVED' (EVERY'
[ rtac (@{thm ssubst} OF prems),
rewrite_goal_tac (map safe_mk_equiv eq_iff_thms),
rewrite_goal_tac (map safe_mk_equiv abs_eqs),
conj_tac (DETERM o resolve_tac (@{thms refl} @ perm_bn_alphas)) ])
(* proves goal "P" *)
val side_thm = Goal.prove ctxt'' [] [] (term_of concl)
(K (EVERY1 [ rtac prem, RANGE [tac1, tac2] ]))
|> singleton (ProofContext.export ctxt'' ctxt)
in
rtac side_thm 1
end) ctxt
in
EVERY1 [rtac qexhaust_thm, RANGE (map2 aux_tac prems bclausess)]
end
fun prove_strong_exhausts lthy exhausts bclausesss bn_finite_thms eq_iff_thms bn_eqvt permute_bns
perm_bn_alphas =
let
val ((_, exhausts'), lthy') = Variable.import true exhausts lthy
val ([c, a], lthy'') = Variable.variant_fixes ["c", "'a"] lthy'
val c = Free (c, TFree (a, @{sort fs}))
val (ecases, main_concls) = exhausts' (* ecases are of the form (params, prems, concl) *)
|> map prop_of
|> map Logic.strip_horn
|> split_list
val ecases' = (map o map) strip_full_horn ecases
val premss = (map2 o map2) (mk_ecase_prems lthy'' c) ecases' bclausesss
fun tac bclausess exhaust {prems, context} =
case_tac context c bn_finite_thms eq_iff_thms bn_eqvt permute_bns perm_bn_alphas
prems bclausess exhaust
fun prove prems bclausess exhaust concl =
Goal.prove lthy'' [] prems concl (tac bclausess exhaust)
in
map4 prove premss bclausesss exhausts' main_concls
|> ProofContext.export lthy'' lthy
end
(** strong induction theorems **)
fun add_c_prop c c_ty trm =
let
val (P, arg) = dest_comb trm
val (P_name, P_ty) = dest_Free P
val (ty_args, bool) = strip_type P_ty
in
Free (P_name, (c_ty :: ty_args) ---> bool) $ c $ arg
end
fun add_qnt_c_prop c_name c_ty trm =
trm |> HOLogic.dest_Trueprop
|> incr_boundvars 1
|> add_c_prop (Bound 0) c_ty
|> HOLogic.mk_Trueprop
|> mk_all (c_name, c_ty)
fun prep_prem lthy c c_name c_ty bclauses (params, prems, concl) =
let
val tys = map snd params
val binders = get_all_binders bclauses
fun prep_binder (opt, i) =
let
val t = Bound (length tys - i - 1)
in
case opt of
NONE => setify_ty lthy (nth tys i) t
| SOME bn => to_set_ty (fastype_of1 (tys, bn $ t)) (bn $ t)
end
val prems' = prems
|> map (incr_boundvars 1)
|> map (add_qnt_c_prop c_name c_ty)
val prems'' =
case binders of
[] => prems' (* case: no binders *)
| _ => binders (* case: binders *)
|> map prep_binder
|> fold_union_env tys
|> incr_boundvars 1
|> (fn t => mk_fresh_star_ty c_ty t (Bound 0))
|> (fn t => HOLogic.mk_Trueprop t :: prems')
val concl' = concl
|> HOLogic.dest_Trueprop
|> incr_boundvars 1
|> add_c_prop (Bound 0) c_ty
|> HOLogic.mk_Trueprop
in
mk_full_horn (params @ [(c_name, c_ty)]) prems'' concl'
end
fun prove_strong_induct lthy induct exhausts size_thms bclausesss =
let
val ((_, [induct']), lthy') = Variable.import true [induct] lthy
val ([c_name, a], lthy'') = Variable.variant_fixes ["c", "'a"] lthy'
val c_ty = TFree (a, @{sort fs})
val c = Free (c_name, c_ty)
val (prems, concl) = induct'
|> prop_of
|> Logic.strip_horn
val concls = concl
|> HOLogic.dest_Trueprop
|> HOLogic.dest_conj
|> map (add_c_prop c c_ty)
|> map HOLogic.mk_Trueprop
val prems' = prems
|> map strip_full_horn
|> map2 (prep_prem lthy'' c c_name c_ty) (flat bclausesss)
fun pat_tac ctxt thm =
Subgoal.FOCUS (fn {params, context, ...} =>
let
val thy = ProofContext.theory_of context
val ty_parms = map (fn (_, ct) => (fastype_of (term_of ct), ct)) params
val vs = Term.add_vars (prop_of thm) []
val vs_tys = map (Type.legacy_freeze_type o snd) vs
val vs_ctrms = map (cterm_of thy o Var) vs
val assigns = map (lookup ty_parms) vs_tys
val thm' = cterm_instantiate (vs_ctrms ~~ assigns) thm
in
rtac thm' 1
end) ctxt
THEN_ALL_NEW asm_full_simp_tac HOL_basic_ss
val size_simp_tac =
simp_tac (size_simpset addsimps (@{thms comp_def snd_conv} @ size_thms))
in
Goal.prove_multi lthy'' [] prems' concls
(fn {prems, context} =>
Induction_Schema.induction_schema_tac context prems
THEN RANGE (map (pat_tac context) exhausts) 1
THEN prove_termination_ind context 1
THEN ALLGOALS size_simp_tac)
|> ProofContext.export lthy'' lthy
end
end (* structure *)