Respects of permute and constructors.
theory LFex
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp"
begin
atom_decl name
atom_decl ident
datatype rkind =
Type
| KPi "rty" "name" "rkind"
and rty =
TConst "ident"
| TApp "rty" "rtrm"
| TPi "rty" "name" "rty"
and rtrm =
Const "ident"
| Var "name"
| App "rtrm" "rtrm"
| Lam "rty" "name" "rtrm"
setup {* snd o define_raw_perms ["rkind", "rty", "rtrm"] ["LFex.rkind", "LFex.rty", "LFex.rtrm"] *}
local_setup {*
snd o define_fv_alpha "LFex.rkind"
[[ [], [[], [(NONE, 1)], [(NONE, 1)]] ],
[ [[]], [[], []], [[], [(NONE, 1)], [(NONE, 1)]] ],
[ [[]], [[]], [[], []], [[], [(NONE, 1)], [(NONE, 1)]]]] *}
notation
alpha_rkind ("_ \<approx>ki _" [100, 100] 100)
and alpha_rty ("_ \<approx>ty _" [100, 100] 100)
and alpha_rtrm ("_ \<approx>tr _" [100, 100] 100)
thm fv_rkind_fv_rty_fv_rtrm.simps alpha_rkind_alpha_rty_alpha_rtrm.intros
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha_rkind_alpha_rty_alpha_rtrm_inj}, []), (build_alpha_inj @{thms alpha_rkind_alpha_rty_alpha_rtrm.intros} @{thms rkind.distinct rty.distinct rtrm.distinct rkind.inject rty.inject rtrm.inject} @{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases} ctxt)) ctxt)) *}
thm alpha_rkind_alpha_rty_alpha_rtrm_inj
lemma rfv_eqvt[eqvt]:
"((pi\<bullet>fv_rkind t1) = fv_rkind (pi\<bullet>t1))"
"((pi\<bullet>fv_rty t2) = fv_rty (pi\<bullet>t2))"
"((pi\<bullet>fv_rtrm t3) = fv_rtrm (pi\<bullet>t3))"
apply(induct t1 and t2 and t3 rule: rkind_rty_rtrm.inducts)
apply(simp_all add: union_eqvt Diff_eqvt)
apply(simp_all add: permute_set_eq atom_eqvt)
done
lemma alpha_eqvt:
"t1 \<approx>ki s1 \<Longrightarrow> (pi \<bullet> t1) \<approx>ki (pi \<bullet> s1)"
"t2 \<approx>ty s2 \<Longrightarrow> (pi \<bullet> t2) \<approx>ty (pi \<bullet> s2)"
"t3 \<approx>tr s3 \<Longrightarrow> (pi \<bullet> t3) \<approx>tr (pi \<bullet> s3)"
apply(induct rule: alpha_rkind_alpha_rty_alpha_rtrm.inducts)
apply (simp_all add: alpha_rkind_alpha_rty_alpha_rtrm.intros)
apply (simp_all add: alpha_rkind_alpha_rty_alpha_rtrm_inj)
apply (rule alpha_gen_atom_eqvt)
apply (simp add: rfv_eqvt)
apply assumption
apply (rule alpha_gen_atom_eqvt)
apply (simp add: rfv_eqvt)
apply assumption
apply (rule alpha_gen_atom_eqvt)
apply (simp add: rfv_eqvt)
apply assumption
done
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha_equivps}, []),
(build_equivps [@{term alpha_rkind}, @{term alpha_rty}, @{term alpha_rtrm}]
@{thm rkind_rty_rtrm.induct} @{thm alpha_rkind_alpha_rty_alpha_rtrm.induct}
@{thms rkind.inject rty.inject rtrm.inject} @{thms alpha_rkind_alpha_rty_alpha_rtrm_inj}
@{thms rkind.distinct rty.distinct rtrm.distinct}
@{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases}
@{thms alpha_eqvt} ctxt)) ctxt)) *}
thm alpha_equivps
local_setup {* define_quotient_type
[(([], @{binding kind}, NoSyn), (@{typ rkind}, @{term alpha_rkind})),
(([], @{binding ty}, NoSyn), (@{typ rty}, @{term alpha_rty} )),
(([], @{binding trm}, NoSyn), (@{typ rtrm}, @{term alpha_rtrm} ))]
(ALLGOALS (resolve_tac @{thms alpha_equivps}))
*}
local_setup {*
(fn ctxt => ctxt
|> snd o (Quotient_Def.quotient_lift_const ("TYP", @{term Type}))
|> snd o (Quotient_Def.quotient_lift_const ("KPI", @{term KPi}))
|> snd o (Quotient_Def.quotient_lift_const ("TCONST", @{term TConst}))
|> snd o (Quotient_Def.quotient_lift_const ("TAPP", @{term TApp}))
|> snd o (Quotient_Def.quotient_lift_const ("TPI", @{term TPi}))
|> snd o (Quotient_Def.quotient_lift_const ("CONS", @{term Const}))
|> snd o (Quotient_Def.quotient_lift_const ("VAR", @{term Var}))
|> snd o (Quotient_Def.quotient_lift_const ("APP", @{term App}))
|> snd o (Quotient_Def.quotient_lift_const ("LAM", @{term Lam}))
|> snd o (Quotient_Def.quotient_lift_const ("fv_kind", @{term fv_rkind}))
|> snd o (Quotient_Def.quotient_lift_const ("fv_ty", @{term fv_rty}))
|> snd o (Quotient_Def.quotient_lift_const ("fv_trm", @{term fv_rtrm}))) *}
print_theorems
local_setup {* prove_const_rsp @{binding rfv_rsp} [@{term fv_rkind}, @{term fv_rty}, @{term fv_rtrm}]
(fn _ => fvbv_rsp_tac @{thm alpha_rkind_alpha_rty_alpha_rtrm.induct} @{thms fv_rkind_fv_rty_fv_rtrm.simps} 1) *}
local_setup {* prove_const_rsp Binding.empty [@{term "permute :: perm \<Rightarrow> rkind \<Rightarrow> rkind"}]
(fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha_eqvt}) 1) *}
local_setup {* prove_const_rsp Binding.empty [@{term "permute :: perm \<Rightarrow> rty \<Rightarrow> rty"}]
(fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha_eqvt}) 1) *}
local_setup {* prove_const_rsp Binding.empty [@{term "permute :: perm \<Rightarrow> rtrm \<Rightarrow> rtrm"}]
(fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha_eqvt}) 1) *}
ML {* fun const_rsp_tac _ = constr_rsp_tac @{thms alpha_rkind_alpha_rty_alpha_rtrm_inj}
@{thms rfv_rsp} @{thms alpha_equivps} 1 *}
local_setup {* prove_const_rsp Binding.empty [@{term TConst}] const_rsp_tac *}
local_setup {* prove_const_rsp Binding.empty [@{term TApp}] const_rsp_tac *}
local_setup {* prove_const_rsp Binding.empty [@{term Var}] const_rsp_tac *}
local_setup {* prove_const_rsp Binding.empty [@{term App}] const_rsp_tac *}
local_setup {* prove_const_rsp Binding.empty [@{term Const}] const_rsp_tac *}
local_setup {* prove_const_rsp Binding.empty [@{term KPi}] const_rsp_tac *}
local_setup {* prove_const_rsp Binding.empty [@{term TPi}] const_rsp_tac *}
local_setup {* prove_const_rsp Binding.empty [@{term Lam}] const_rsp_tac *}
lemmas kind_ty_trm_induct = rkind_rty_rtrm.induct[quot_lifted]
thm rkind_rty_rtrm.inducts
lemmas kind_ty_trm_inducts = rkind_rty_rtrm.inducts[quot_lifted]
instantiation kind and ty and trm :: pt
begin
quotient_definition
"permute_kind :: perm \<Rightarrow> kind \<Rightarrow> kind"
is
"permute :: perm \<Rightarrow> rkind \<Rightarrow> rkind"
quotient_definition
"permute_ty :: perm \<Rightarrow> ty \<Rightarrow> ty"
is
"permute :: perm \<Rightarrow> rty \<Rightarrow> rty"
quotient_definition
"permute_trm :: perm \<Rightarrow> trm \<Rightarrow> trm"
is
"permute :: perm \<Rightarrow> rtrm \<Rightarrow> rtrm"
lemmas permute_ktt[simp] = permute_rkind_permute_rty_permute_rtrm.simps[quot_lifted]
lemma perm_zero_ok: "0 \<bullet> (x :: kind) = x \<and> 0 \<bullet> (y :: ty) = y \<and> 0 \<bullet> (z :: trm) = z"
apply (induct rule: kind_ty_trm_induct)
apply (simp_all)
done
lemma perm_add_ok:
"((p + q) \<bullet> (x1 :: kind) = (p \<bullet> q \<bullet> x1))"
"((p + q) \<bullet> (x2 :: ty) = p \<bullet> q \<bullet> x2)"
"((p + q) \<bullet> (x3 :: trm) = p \<bullet> q \<bullet> x3)"
apply (induct x1 and x2 and x3 rule: kind_ty_trm_inducts)
apply (simp_all)
done
instance
apply default
apply (simp_all add: perm_zero_ok perm_add_ok)
done
end
lemmas ALPHA_kind_ALPHA_ty_ALPHA_trm_inducts = alpha_rkind_alpha_rty_alpha_rtrm.inducts[unfolded alpha_gen, quot_lifted, folded alpha_gen]
lemmas kind_ty_trm_INJECT = alpha_rkind_alpha_rty_alpha_rtrm_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
lemmas fv_kind_ty_trm = fv_rkind_fv_rty_fv_rtrm.simps[quot_lifted]
lemmas fv_eqvt = rfv_eqvt[quot_lifted]
lemma supp_rkind_rty_rtrm_easy:
"supp TYP = {}"
"supp (TCONST i) = {atom i}"
"supp (TAPP A M) = supp A \<union> supp M"
"supp (CONS i) = {atom i}"
"supp (VAR x) = {atom x}"
"supp (APP M N) = supp M \<union> supp N"
apply (simp_all add: supp_def permute_ktt)
apply (simp_all only: kind_ty_trm_INJECT)
apply (simp_all only: supp_at_base[simplified supp_def])
apply (simp_all add: Collect_imp_eq Collect_neg_eq)
done
lemma supp_bind:
"(supp (atom na, (ty, ki))) supports (KPI ty na ki)"
"(supp (atom na, (ty, ty2))) supports (TPI ty na ty2)"
"(supp (atom na, (ty, rtrm))) supports (LAM ty na rtrm)"
apply(simp_all add: supports_def)
apply(fold fresh_def)
apply(simp_all add: fresh_Pair swap_fresh_fresh)
apply(clarify)
apply(subst swap_at_base_simps(3))
apply(simp_all add: fresh_atom)
apply(clarify)
apply(subst swap_at_base_simps(3))
apply(simp_all add: fresh_atom)
apply(clarify)
apply(subst swap_at_base_simps(3))
apply(simp_all add: fresh_atom)
done
lemma kind_ty_trm_fs:
"finite (supp (x\<Colon>kind))"
"finite (supp (y\<Colon>ty))"
"finite (supp (z\<Colon>trm))"
apply(induct x and y and z rule: kind_ty_trm_inducts)
apply(simp_all add: supp_rkind_rty_rtrm_easy)
apply(rule supports_finite)
apply(rule supp_bind(1))
apply(simp add: supp_Pair supp_atom)
apply(rule supports_finite)
apply(rule supp_bind(2))
apply(simp add: supp_Pair supp_atom)
apply(rule supports_finite)
apply(rule supp_bind(3))
apply(simp add: supp_Pair supp_atom)
done
instance kind and ty and trm :: fs
apply(default)
apply(simp_all only: kind_ty_trm_fs)
done
lemma supp_fv:
"supp t1 = fv_kind t1"
"supp t2 = fv_ty t2"
"supp t3 = fv_trm t3"
apply(induct t1 and t2 and t3 rule: kind_ty_trm_inducts)
apply (simp_all add: supp_rkind_rty_rtrm_easy)
apply (simp_all add: fv_kind_ty_trm)
apply(subgoal_tac "supp (KPI rty name rkind) = supp rty \<union> supp (Abs {atom name} rkind)")
apply(simp add: supp_Abs Set.Un_commute)
apply(simp (no_asm) add: supp_def)
apply(simp add: kind_ty_trm_INJECT)
apply(simp add: Abs_eq_iff)
apply(simp add: alpha_gen)
apply(simp add: Collect_imp_eq Collect_neg_eq Set.Un_commute insert_eqvt empty_eqvt atom_eqvt)
apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric])
apply(subgoal_tac "supp (TPI rty1 name rty2) = supp rty1 \<union> supp (Abs {atom name} rty2)")
apply(simp add: supp_Abs Set.Un_commute)
apply(simp (no_asm) add: supp_def)
apply(simp add: kind_ty_trm_INJECT)
apply(simp add: Abs_eq_iff)
apply(simp add: alpha_gen)
apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric] insert_eqvt empty_eqvt atom_eqvt)
apply(simp add: Collect_imp_eq Collect_neg_eq Set.Un_commute)
apply(subgoal_tac "supp (LAM rty name rtrm) = supp rty \<union> supp (Abs {atom name} rtrm)")
apply(simp add: supp_Abs Set.Un_commute)
apply(simp (no_asm) add: supp_def)
apply(simp add: kind_ty_trm_INJECT)
apply(simp add: Abs_eq_iff)
apply(simp add: alpha_gen)
apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric] insert_eqvt empty_eqvt atom_eqvt)
apply(simp add: Collect_imp_eq Collect_neg_eq Set.Un_commute)
done
(* Not needed anymore *)
lemma supp_kpi_pre: "supp (KPI A x K) = (supp (Abs {atom x} K)) \<union> supp A"
apply (simp add: permute_set_eq supp_def Abs_eq_iff kind_ty_trm_INJECT)
apply (simp add: alpha_gen supp_fv)
apply (simp add: Collect_imp_eq Collect_neg_eq add: atom_eqvt Set.Un_commute)
done
lemma supp_rkind_rty_rtrm:
"supp TYP = {}"
"supp (KPI A x K) = supp A \<union> (supp K - {atom x})"
"supp (TCONST i) = {atom i}"
"supp (TAPP A M) = supp A \<union> supp M"
"supp (TPI A x B) = supp A \<union> (supp B - {atom x})"
"supp (CONS i) = {atom i}"
"supp (VAR x) = {atom x}"
"supp (APP M N) = supp M \<union> supp N"
"supp (LAM A x M) = supp A \<union> (supp M - {atom x})"
apply (simp_all only: supp_rkind_rty_rtrm_easy)
apply (simp_all only: supp_fv fv_kind_ty_trm)
done
end