theory Nominal2_FCB+ −
imports "Nominal2_Abs" + −
begin+ −
+ −
+ −
text {*+ −
A tactic which solves all trivial cases in function + −
definitions, and leaves the others unchanged.+ −
*}+ −
+ −
ML {*+ −
val all_trivials : (Proof.context -> Method.method) context_parser =+ −
Scan.succeed (fn ctxt =>+ −
let+ −
val tac = TRYALL (SOLVED' (full_simp_tac (simpset_of ctxt)))+ −
in + −
Method.SIMPLE_METHOD' (K tac)+ −
end)+ −
*}+ −
+ −
method_setup all_trivials = {* all_trivials *} {* solves trivial goals *}+ −
+ −
+ −
lemma Abs_lst1_fcb:+ −
fixes x y :: "'a :: at"+ −
and S T :: "'b :: fs"+ −
assumes e: "[[atom x]]lst. T = [[atom y]]lst. S"+ −
and f1: "\<lbrakk>x \<noteq> y; atom y \<sharp> T; atom x \<sharp> (y \<leftrightarrow> x) \<bullet> T\<rbrakk> \<Longrightarrow> atom x \<sharp> f x T"+ −
and f2: "\<lbrakk>x \<noteq> y; atom y \<sharp> T; atom x \<sharp> (y \<leftrightarrow> x) \<bullet> T\<rbrakk> \<Longrightarrow> atom y \<sharp> f x T"+ −
and p: "\<lbrakk>S = (x \<leftrightarrow> y) \<bullet> T; x \<noteq> y; atom y \<sharp> T; atom x \<sharp> S\<rbrakk> + −
\<Longrightarrow> (x \<leftrightarrow> y) \<bullet> (f x T) = f y S"+ −
shows "f x T = f y S"+ −
using e+ −
apply(case_tac "atom x \<sharp> S")+ −
apply(simp add: Abs1_eq_iff')+ −
apply(elim conjE disjE)+ −
apply(simp)+ −
apply(rule trans)+ −
apply(rule_tac p="(x \<leftrightarrow> y)" in supp_perm_eq[symmetric])+ −
apply(rule fresh_star_supp_conv)+ −
apply(simp add: flip_def supp_swap fresh_star_def f1 f2)+ −
apply(simp add: flip_commute p)+ −
apply(simp add: Abs1_eq_iff)+ −
done+ −
+ −
lemma Abs_lst_fcb:+ −
fixes xs ys :: "'a :: fs"+ −
and S T :: "'b :: fs"+ −
assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"+ −
and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"+ −
and f2: "\<And>x. \<lbrakk>supp T - set (ba xs) = supp S - set (ba ys); x \<in> set (ba ys)\<rbrakk> \<Longrightarrow> x \<sharp> f xs T"+ −
and eqv: "\<And>p. \<lbrakk>p \<bullet> T = S; p \<bullet> ba xs = ba ys; supp p \<subseteq> set (ba xs) \<union> set (ba ys)\<rbrakk> + −
\<Longrightarrow> p \<bullet> (f xs T) = f ys S"+ −
shows "f xs T = f ys S"+ −
using e apply -+ −
apply(subst (asm) Abs_eq_iff2)+ −
apply(simp add: alphas)+ −
apply(elim exE conjE)+ −
apply(rule trans)+ −
apply(rule_tac p="p" in supp_perm_eq[symmetric])+ −
apply(rule fresh_star_supp_conv)+ −
apply(drule fresh_star_perm_set_conv)+ −
apply(rule finite_Diff)+ −
apply(rule finite_supp)+ −
apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")+ −
apply(metis Un_absorb2 fresh_star_Un)+ −
apply(subst fresh_star_Un)+ −
apply(rule conjI)+ −
apply(simp add: fresh_star_def f1)+ −
apply(simp add: fresh_star_def f2)+ −
apply(simp add: eqv)+ −
done+ −
+ −
lemma Abs_set_fcb:+ −
fixes xs ys :: "'a :: fs"+ −
and S T :: "'b :: fs"+ −
assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)"+ −
and f1: "\<And>x. x \<in> ba xs \<Longrightarrow> x \<sharp> f xs T"+ −
and f2: "\<And>x. \<lbrakk>supp T - ba xs = supp S - ba ys; x \<in> ba ys\<rbrakk> \<Longrightarrow> x \<sharp> f xs T"+ −
and eqv: "\<And>p. \<lbrakk>p \<bullet> T = S; p \<bullet> ba xs = ba ys; supp p \<subseteq> ba xs \<union> ba ys\<rbrakk> \<Longrightarrow> p \<bullet> (f xs T) = f ys S"+ −
shows "f xs T = f ys S"+ −
using e apply -+ −
apply(subst (asm) Abs_eq_iff2)+ −
apply(simp add: alphas)+ −
apply(elim exE conjE)+ −
apply(rule trans)+ −
apply(rule_tac p="p" in supp_perm_eq[symmetric])+ −
apply(rule fresh_star_supp_conv)+ −
apply(drule fresh_star_perm_set_conv)+ −
apply(rule finite_Diff)+ −
apply(rule finite_supp)+ −
apply(subgoal_tac "(ba xs \<union> ba ys) \<sharp>* f xs T")+ −
apply(metis Un_absorb2 fresh_star_Un)+ −
apply(subst fresh_star_Un)+ −
apply(rule conjI)+ −
apply(simp add: fresh_star_def f1)+ −
apply(simp add: fresh_star_def f2)+ −
apply(simp add: eqv)+ −
done+ −
+ −
lemma Abs_res_fcb:+ −
fixes xs ys :: "('a :: at_base) set"+ −
and S T :: "'b :: fs"+ −
assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)"+ −
and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T"+ −
and f2: "\<And>x. \<lbrakk>supp T - atom ` xs = supp S - atom ` ys; x \<in> atom ` ys; x \<in> supp S\<rbrakk> \<Longrightarrow> x \<sharp> f xs T"+ −
and eqv: "\<And>p. \<lbrakk>p \<bullet> T = S; supp p \<subseteq> atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S;+ −
p \<bullet> (atom ` xs \<inter> supp T) = atom ` ys \<inter> supp S\<rbrakk> \<Longrightarrow> p \<bullet> (f xs T) = f ys S"+ −
shows "f xs T = f ys S"+ −
using e apply -+ −
apply(subst (asm) Abs_eq_res_set)+ −
apply(subst (asm) Abs_eq_iff2)+ −
apply(simp add: alphas)+ −
apply(elim exE conjE)+ −
apply(rule trans)+ −
apply(rule_tac p="p" in supp_perm_eq[symmetric])+ −
apply(rule fresh_star_supp_conv)+ −
apply(drule fresh_star_perm_set_conv)+ −
apply(rule finite_Diff)+ −
apply(rule finite_supp)+ −
apply(subgoal_tac "(atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S) \<sharp>* f xs T")+ −
apply(metis Un_absorb2 fresh_star_Un)+ −
apply(subst fresh_star_Un)+ −
apply(rule conjI)+ −
apply(simp add: fresh_star_def f1)+ −
apply(subgoal_tac "supp T - atom ` xs = supp S - atom ` ys")+ −
apply(simp add: fresh_star_def f2)+ −
apply(blast)+ −
apply(simp add: eqv)+ −
done+ −
+ −
+ −
+ −
lemma Abs_set_fcb2:+ −
fixes as bs :: "atom set"+ −
and x y :: "'b :: fs"+ −
and c::"'c::fs"+ −
assumes eq: "[as]set. x = [bs]set. y"+ −
and fin: "finite as" "finite bs"+ −
and fcb1: "as \<sharp>* f as x c"+ −
and fresh1: "as \<sharp>* c"+ −
and fresh2: "bs \<sharp>* c"+ −
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"+ −
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"+ −
shows "f as x c = f bs y c"+ −
proof -+ −
have "supp (as, x, c) supports (f as x c)"+ −
unfolding supports_def fresh_def[symmetric]+ −
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)+ −
then have fin1: "finite (supp (f as x c))"+ −
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)+ −
have "supp (bs, y, c) supports (f bs y c)"+ −
unfolding supports_def fresh_def[symmetric]+ −
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)+ −
then have fin2: "finite (supp (f bs y c))"+ −
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)+ −
obtain q::"perm" where + −
fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and + −
fr2: "supp q \<sharp>* ([as]set. x)" and + −
inc: "supp q \<subseteq> as \<union> (q \<bullet> as)"+ −
using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]set. x"] + −
fin1 fin2 fin+ −
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)+ −
have "[q \<bullet> as]set. (q \<bullet> x) = q \<bullet> ([as]set. x)" by simp+ −
also have "\<dots> = [as]set. x"+ −
by (simp only: fr2 perm_supp_eq)+ −
finally have "[q \<bullet> as]set. (q \<bullet> x) = [bs]set. y" using eq by simp+ −
then obtain r::perm where + −
qq1: "q \<bullet> x = r \<bullet> y" and + −
qq2: "q \<bullet> as = r \<bullet> bs" and + −
qq3: "supp r \<subseteq> (q \<bullet> as) \<union> bs"+ −
apply(drule_tac sym)+ −
apply(simp only: Abs_eq_iff2 alphas)+ −
apply(erule exE)+ −
apply(erule conjE)++ −
apply(drule_tac x="p" in meta_spec)+ −
apply(simp add: set_eqvt)+ −
apply(blast)+ −
done+ −
have "as \<sharp>* f as x c" by (rule fcb1)+ −
then have "q \<bullet> (as \<sharp>* f as x c)"+ −
by (simp add: permute_bool_def)+ −
then have "(q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"+ −
apply(simp only: fresh_star_eqvt set_eqvt)+ −
apply(subst (asm) perm1)+ −
using inc fresh1 fr1+ −
apply(auto simp add: fresh_star_def fresh_Pair)+ −
done+ −
then have "(r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp+ −
then have "r \<bullet> (bs \<sharp>* f bs y c)"+ −
apply(simp only: fresh_star_eqvt set_eqvt)+ −
apply(subst (asm) perm2[symmetric])+ −
using qq3 fresh2 fr1+ −
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)+ −
done+ −
then have fcb2: "bs \<sharp>* f bs y c" by (simp add: permute_bool_def)+ −
have "f as x c = q \<bullet> (f as x c)"+ −
apply(rule perm_supp_eq[symmetric])+ −
using inc fcb1 fr1 by (auto simp add: fresh_star_def)+ −
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" + −
apply(rule perm1)+ −
using inc fresh1 fr1 by (auto simp add: fresh_star_def)+ −
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp+ −
also have "\<dots> = r \<bullet> (f bs y c)"+ −
apply(rule perm2[symmetric])+ −
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)+ −
also have "... = f bs y c"+ −
apply(rule perm_supp_eq)+ −
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)+ −
finally show ?thesis by simp+ −
qed+ −
+ −
+ −
lemma Abs_res_fcb2:+ −
fixes as bs :: "atom set"+ −
and x y :: "'b :: fs"+ −
and c::"'c::fs"+ −
assumes eq: "[as]res. x = [bs]res. y"+ −
and fin: "finite as" "finite bs"+ −
and fcb1: "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c"+ −
and fresh1: "as \<sharp>* c"+ −
and fresh2: "bs \<sharp>* c"+ −
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f (as \<inter> supp x) x c) = f (p \<bullet> (as \<inter> supp x)) (p \<bullet> x) c"+ −
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f (bs \<inter> supp y) y c) = f (p \<bullet> (bs \<inter> supp y)) (p \<bullet> y) c"+ −
shows "f (as \<inter> supp x) x c = f (bs \<inter> supp y) y c"+ −
proof -+ −
have "supp (as, x, c) supports (f (as \<inter> supp x) x c)"+ −
unfolding supports_def fresh_def[symmetric]+ −
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh inter_eqvt supp_eqvt)+ −
then have fin1: "finite (supp (f (as \<inter> supp x) x c))"+ −
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)+ −
have "supp (bs, y, c) supports (f (bs \<inter> supp y) y c)"+ −
unfolding supports_def fresh_def[symmetric]+ −
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh inter_eqvt supp_eqvt)+ −
then have fin2: "finite (supp (f (bs \<inter> supp y) y c))"+ −
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)+ −
obtain q::"perm" where + −
fr1: "(q \<bullet> (as \<inter> supp x)) \<sharp>* (x, c, f (as \<inter> supp x) x c, f (bs \<inter> supp y) y c)" and + −
fr2: "supp q \<sharp>* ([as \<inter> supp x]set. x)" and + −
inc: "supp q \<subseteq> (as \<inter> supp x) \<union> (q \<bullet> (as \<inter> supp x))"+ −
using at_set_avoiding3[where xs="as \<inter> supp x" and c="(x, c, f (as \<inter> supp x) x c, f (bs \<inter> supp y) y c)" + −
and x="[as \<inter> supp x]set. x"] + −
fin1 fin2 fin+ −
apply (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)+ −
done+ −
have "[q \<bullet> (as \<inter> supp x)]set. (q \<bullet> x) = q \<bullet> ([as \<inter> supp x]set. x)" by simp+ −
also have "\<dots> = [as \<inter> supp x]set. x"+ −
by (simp only: fr2 perm_supp_eq)+ −
finally have "[q \<bullet> (as \<inter> supp x)]set. (q \<bullet> x) = [bs \<inter> supp y]set. y" using eq + −
by(simp add: Abs_eq_res_set)+ −
then obtain r::perm where + −
qq1: "q \<bullet> x = r \<bullet> y" and + −
qq2: "(q \<bullet> as \<inter> supp (q \<bullet> x)) = r \<bullet> (bs \<inter> supp y)" and + −
qq3: "supp r \<subseteq> (bs \<inter> supp y) \<union> q \<bullet> (as \<inter> supp x)"+ −
apply(drule_tac sym)+ −
apply(simp only: Abs_eq_iff2 alphas)+ −
apply(erule exE)+ −
apply(erule conjE)++ −
apply(drule_tac x="p" in meta_spec)+ −
apply(simp add: set_eqvt inter_eqvt supp_eqvt)+ −
done+ −
have "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c" by (rule fcb1)+ −
then have "q \<bullet> ((as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c)"+ −
by (simp add: permute_bool_def)+ −
then have "(q \<bullet> (as \<inter> supp x)) \<sharp>* f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c"+ −
apply(simp only: fresh_star_eqvt set_eqvt)+ −
apply(subst (asm) perm1)+ −
using inc fresh1 fr1+ −
apply(auto simp add: fresh_star_def fresh_Pair)+ −
done+ −
then have "(r \<bullet> (bs \<inter> supp y)) \<sharp>* f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq1 qq2 + −
apply(perm_simp)+ −
apply simp+ −
done+ −
then have "r \<bullet> ((bs \<inter> supp y) \<sharp>* f (bs \<inter> supp y) y c)"+ −
apply(simp only: fresh_star_eqvt set_eqvt)+ −
apply(subst (asm) perm2[symmetric])+ −
using qq3 fresh2 fr1+ −
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)+ −
done+ −
then have fcb2: "(bs \<inter> supp y) \<sharp>* f (bs \<inter> supp y) y c" by (simp add: permute_bool_def)+ −
have "f (as \<inter> supp x) x c = q \<bullet> (f (as \<inter> supp x) x c)"+ −
apply(rule perm_supp_eq[symmetric])+ −
using inc fcb1 fr1 + −
apply (auto simp add: fresh_star_def)+ −
done+ −
also have "\<dots> = f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c" + −
apply(rule perm1)+ −
using inc fresh1 fr1 by (auto simp add: fresh_star_def)+ −
also have "\<dots> = f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq1 qq2 + −
apply(perm_simp)+ −
apply simp+ −
done+ −
also have "\<dots> = r \<bullet> (f (bs \<inter> supp y) y c)"+ −
apply(rule perm2[symmetric])+ −
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)+ −
also have "... = f (bs \<inter> supp y) y c"+ −
apply(rule perm_supp_eq)+ −
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)+ −
finally show ?thesis by simp+ −
qed+ −
+ −
lemma Abs_lst_fcb2:+ −
fixes as bs :: "atom list"+ −
and x y :: "'b :: fs"+ −
and c::"'c::fs"+ −
assumes eq: "[as]lst. x = [bs]lst. y"+ −
and fcb1: "(set as) \<sharp>* f as x c"+ −
and fresh1: "set as \<sharp>* c"+ −
and fresh2: "set bs \<sharp>* c"+ −
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"+ −
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"+ −
shows "f as x c = f bs y c"+ −
proof -+ −
have "supp (as, x, c) supports (f as x c)"+ −
unfolding supports_def fresh_def[symmetric]+ −
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)+ −
then have fin1: "finite (supp (f as x c))"+ −
by (auto intro: supports_finite simp add: finite_supp)+ −
have "supp (bs, y, c) supports (f bs y c)"+ −
unfolding supports_def fresh_def[symmetric]+ −
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)+ −
then have fin2: "finite (supp (f bs y c))"+ −
by (auto intro: supports_finite simp add: finite_supp)+ −
obtain q::"perm" where + −
fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and + −
fr2: "supp q \<sharp>* Abs_lst as x" and + −
inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"+ −
using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] + −
fin1 fin2+ −
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)+ −
have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp+ −
also have "\<dots> = Abs_lst as x"+ −
by (simp only: fr2 perm_supp_eq)+ −
finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp+ −
then obtain r::perm where + −
qq1: "q \<bullet> x = r \<bullet> y" and + −
qq2: "q \<bullet> as = r \<bullet> bs" and + −
qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"+ −
apply(drule_tac sym)+ −
apply(simp only: Abs_eq_iff2 alphas)+ −
apply(erule exE)+ −
apply(erule conjE)++ −
apply(drule_tac x="p" in meta_spec)+ −
apply(simp add: set_eqvt)+ −
apply(blast)+ −
done+ −
have "(set as) \<sharp>* f as x c" by (rule fcb1)+ −
then have "q \<bullet> ((set as) \<sharp>* f as x c)"+ −
by (simp add: permute_bool_def)+ −
then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"+ −
apply(simp only: fresh_star_eqvt set_eqvt)+ −
apply(subst (asm) perm1)+ −
using inc fresh1 fr1+ −
apply(auto simp add: fresh_star_def fresh_Pair)+ −
done+ −
then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp+ −
then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"+ −
apply(simp only: fresh_star_eqvt set_eqvt)+ −
apply(subst (asm) perm2[symmetric])+ −
using qq3 fresh2 fr1+ −
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)+ −
done+ −
then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)+ −
have "f as x c = q \<bullet> (f as x c)"+ −
apply(rule perm_supp_eq[symmetric])+ −
using inc fcb1 fr1 by (auto simp add: fresh_star_def)+ −
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" + −
apply(rule perm1)+ −
using inc fresh1 fr1 by (auto simp add: fresh_star_def)+ −
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp+ −
also have "\<dots> = r \<bullet> (f bs y c)"+ −
apply(rule perm2[symmetric])+ −
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)+ −
also have "... = f bs y c"+ −
apply(rule perm_supp_eq)+ −
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)+ −
finally show ?thesis by simp+ −
qed+ −
+ −
lemma Abs_lst1_fcb2:+ −
fixes a b :: "atom"+ −
and x y :: "'b :: fs"+ −
and c::"'c :: fs"+ −
assumes e: "[[a]]lst. x = [[b]]lst. y"+ −
and fcb1: "a \<sharp> f a x c"+ −
and fresh: "{a, b} \<sharp>* c"+ −
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"+ −
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"+ −
shows "f a x c = f b y c"+ −
using e+ −
apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])+ −
apply(simp_all)+ −
using fcb1 fresh perm1 perm2+ −
apply(simp_all add: fresh_star_def)+ −
done+ −
+ −
lemma Abs_lst1_fcb2':+ −
fixes a b :: "'a::at"+ −
and x y :: "'b :: fs"+ −
and c::"'c :: fs"+ −
assumes e: "[[atom a]]lst. x = [[atom b]]lst. y"+ −
and fcb1: "atom a \<sharp> f a x c"+ −
and fresh: "{atom a, atom b} \<sharp>* c"+ −
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"+ −
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"+ −
shows "f a x c = f b y c"+ −
using e+ −
apply(drule_tac Abs_lst1_fcb2[where c="c" and f="\<lambda>a . f ((inv atom) a)"])+ −
using fcb1 fresh perm1 perm2+ −
apply(simp_all add: fresh_star_def inv_f_f inj_on_def atom_eqvt)+ −
done+ −
+ −
end+ −