theory LetRecB
imports "../Nominal2"
begin
atom_decl name
nominal_datatype let_rec:
trm =
Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm" bind x in t
| Let_Rec bp::"bp" t::"trm" bind "bn bp" in bp t
and bp =
Bp "name" "trm"
binder
bn::"bp \<Rightarrow> atom list"
where
"bn (Bp x t) = [atom x]"
thm let_rec.distinct
thm let_rec.induct
thm let_rec.exhaust
thm let_rec.fv_defs
thm let_rec.bn_defs
thm let_rec.perm_simps
thm let_rec.eq_iff
thm let_rec.fv_bn_eqvt
thm let_rec.size_eqvt
lemma Abs_lst_fcb2:
fixes as bs :: "'a :: fs"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[ba as]lst. x = [ba bs]lst. y"
and fcb1: "(set (ba as)) \<sharp>* f as x c"
and fresh1: "set (ba as) \<sharp>* c"
and fresh2: "set (ba bs) \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
and props: "eqvt ba" "inj ba"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
then have fin1: "finite (supp (f as x c))"
by (auto intro: supports_finite simp add: finite_supp)
have "supp (bs, y, c) supports (f bs y c)"
unfolding supports_def fresh_def[symmetric]
by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
then have fin2: "finite (supp (f bs y c))"
by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
fr1: "(q \<bullet> (set (ba as))) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* ([ba as]lst. x)" and
inc: "supp q \<subseteq> (set (ba as)) \<union> q \<bullet> (set (ba as))"
using at_set_avoiding3[where xs="set (ba as)" and c="(x, c, f as x c, f bs y c)" and x="[ba as]lst. x"]
fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "[q \<bullet> (ba as)]lst. (q \<bullet> x) = q \<bullet> ([ba as]lst. x)" by simp
also have "\<dots> = [ba as]lst. x"
by (simp only: fr2 perm_supp_eq)
finally have "[q \<bullet> (ba as)]lst. (q \<bullet> x) = [ba bs]lst. y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "q \<bullet> (ba as) = r \<bullet> (ba bs)" and
qq3: "supp r \<subseteq> (q \<bullet> (set (ba as))) \<union> set (ba bs)"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
apply(simp add: set_eqvt)
apply(blast)
done
have qq4: "q \<bullet> as = r \<bullet> bs" using qq2 props unfolding eqvt_def inj_on_def
apply(perm_simp)
apply(simp)
done
have "(set (ba as)) \<sharp>* f as x c" by (rule fcb1)
then have "q \<bullet> ((set (ba as)) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
then have "set (q \<bullet> (ba as)) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
then have "set (r \<bullet> (ba bs)) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 qq4
by simp
then have "r \<bullet> ((set (ba bs)) \<sharp>* f bs y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
then have fcb2: "(set (ba bs)) \<sharp>* f bs y c" by (simp add: permute_bool_def)
have "f as x c = q \<bullet> (f as x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq4 by simp
also have "\<dots> = r \<bullet> (f bs y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
also have "... = f bs y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
by (simp add: permute_pure)
nominal_primrec
height_trm :: "trm \<Rightarrow> nat"
and height_bp :: "bp \<Rightarrow> nat"
where
"height_trm (Var x) = 1"
| "height_trm (App l r) = max (height_trm l) (height_trm r)"
| "height_trm (Lam v b) = 1 + (height_trm b)"
| "height_trm (Let_Rec bp b) = max (height_bp bp) (height_trm b)"
| "height_bp (Bp v t) = height_trm t"
--"eqvt"
apply (simp only: eqvt_def height_trm_height_bp_graph_def)
apply (rule, perm_simp, rule, rule TrueI)
--"completeness"
apply (case_tac x)
apply (case_tac a rule: let_rec.exhaust(1))
apply (auto)[4]
apply (case_tac b rule: let_rec.exhaust(2))
apply blast
apply(simp_all)
apply (erule_tac c="()" in Abs_lst_fcb2)
apply (simp_all add: fresh_star_def pure_fresh)[3]
apply (simp add: eqvt_at_def)
apply (simp add: eqvt_at_def)
apply(simp add: eqvt_def)
apply(perm_simp)
apply(simp)
apply(simp add: inj_on_def)
--"The following could be done by nominal"
apply (simp add: meta_eq_to_obj_eq[OF height_trm_def, symmetric, unfolded fun_eq_iff])
apply (simp add: meta_eq_to_obj_eq[OF height_bp_def, symmetric, unfolded fun_eq_iff])
apply (subgoal_tac "eqvt_at height_bp bp")
apply (subgoal_tac "eqvt_at height_bp bpa")
apply (subgoal_tac "eqvt_at height_trm b")
apply (subgoal_tac "eqvt_at height_trm ba")
apply (thin_tac "eqvt_at height_trm_height_bp_sumC (Inr bp)")
apply (thin_tac "eqvt_at height_trm_height_bp_sumC (Inr bpa)")
apply (thin_tac "eqvt_at height_trm_height_bp_sumC (Inl b)")
apply (thin_tac "eqvt_at height_trm_height_bp_sumC (Inl ba)")
defer
apply (simp add: eqvt_at_def height_trm_def)
apply (simp add: eqvt_at_def height_trm_def)
apply (simp add: eqvt_at_def height_bp_def)
apply (simp add: eqvt_at_def height_bp_def)
--"I'd like to apply FCB here, but the following fails"
apply (subgoal_tac "height_bp bp = height_bp bpa")
apply (subgoal_tac "height_trm b = height_trm ba")
apply simp
apply (subgoal_tac "(\<lambda>as x c. height_trm (snd (bp, b))) as x c = (\<lambda>as x c. height_trm (snd (bpa, ba))) as x c")
apply simp
apply (erule_tac c="()" and ba="bn" and f="\<lambda>as x c. height_trm (snd x)" in Abs_lst_fcb2)
...
done
termination by lexicographic_order
end