(* Title: HOL/Quotient_Examples/Quotient_Int.thy+ −
Author: Cezary Kaliszyk+ −
Author: Christian Urban+ −
+ −
Integers based on Quotients.+ −
*)+ −
theory Quotient_Int+ −
imports Quotient_Product Nat+ −
begin+ −
+ −
fun+ −
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)+ −
where+ −
"intrel (x, y) (u, v) = (x + v = u + y)"+ −
+ −
quotient_type int = "nat \<times> nat" / intrel+ −
by (auto simp add: equivp_def expand_fun_eq)+ −
+ −
instantiation int :: "{zero, one, plus, uminus, minus, times, ord, abs, sgn}"+ −
begin+ −
+ −
quotient_definition+ −
"0 \<Colon> int" is "(0\<Colon>nat, 0\<Colon>nat)"+ −
+ −
quotient_definition+ −
"1 \<Colon> int" is "(1\<Colon>nat, 0\<Colon>nat)"+ −
+ −
fun+ −
plus_int_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"+ −
where+ −
"plus_int_raw (x, y) (u, v) = (x + u, y + v)"+ −
+ −
quotient_definition+ −
"(op +) \<Colon> (int \<Rightarrow> int \<Rightarrow> int)" is "plus_int_raw"+ −
+ −
fun+ −
uminus_int_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"+ −
where+ −
"uminus_int_raw (x, y) = (y, x)"+ −
+ −
quotient_definition+ −
"(uminus \<Colon> (int \<Rightarrow> int))" is "uminus_int_raw"+ −
+ −
definition+ −
minus_int_def [code del]: "z - w = z + (-w\<Colon>int)"+ −
+ −
fun+ −
times_int_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"+ −
where+ −
"times_int_raw (x, y) (u, v) = (x*u + y*v, x*v + y*u)"+ −
+ −
quotient_definition+ −
"(op *) :: (int \<Rightarrow> int \<Rightarrow> int)" is "times_int_raw"+ −
+ −
fun+ −
le_int_raw :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"+ −
where+ −
"le_int_raw (x, y) (u, v) = (x+v \<le> u+y)"+ −
+ −
quotient_definition+ −
le_int_def: "(op \<le>) :: int \<Rightarrow> int \<Rightarrow> bool" is "le_int_raw"+ −
+ −
definition+ −
less_int_def [code del]: "(z\<Colon>int) < w = (z \<le> w \<and> z \<noteq> w)"+ −
+ −
definition+ −
zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)"+ −
+ −
definition+ −
zsgn_def: "sgn (i\<Colon>int) = (if i = 0 then 0 else if 0 < i then 1 else - 1)"+ −
+ −
instance ..+ −
+ −
end+ −
+ −
lemma [quot_respect]:+ −
shows "(op \<approx> ===> op \<approx> ===> op \<approx>) plus_int_raw plus_int_raw"+ −
and "(op \<approx> ===> op \<approx>) uminus_int_raw uminus_int_raw"+ −
and "(op \<approx> ===> op \<approx> ===> op =) le_int_raw le_int_raw"+ −
by auto+ −
+ −
lemma times_int_raw_fst:+ −
assumes a: "x \<approx> z"+ −
shows "times_int_raw x y \<approx> times_int_raw z y"+ −
using a+ −
apply(cases x, cases y, cases z)+ −
apply(auto simp add: times_int_raw.simps intrel.simps)+ −
apply(rename_tac u v w x y z)+ −
apply(subgoal_tac "u*w + z*w = y*w + v*w & u*x + z*x = y*x + v*x")+ −
apply(simp add: mult_ac)+ −
apply(simp add: add_mult_distrib [symmetric])+ −
done+ −
+ −
lemma times_int_raw_snd:+ −
assumes a: "x \<approx> z"+ −
shows "times_int_raw y x \<approx> times_int_raw y z"+ −
using a+ −
apply(cases x, cases y, cases z)+ −
apply(auto simp add: times_int_raw.simps intrel.simps)+ −
apply(rename_tac u v w x y z)+ −
apply(subgoal_tac "u*w + z*w = y*w + v*w & u*x + z*x = y*x + v*x")+ −
apply(simp add: mult_ac)+ −
apply(simp add: add_mult_distrib [symmetric])+ −
done+ −
+ −
lemma [quot_respect]:+ −
shows "(op \<approx> ===> op \<approx> ===> op \<approx>) times_int_raw times_int_raw"+ −
apply(simp only: fun_rel_def)+ −
apply(rule allI | rule impI)++ −
apply(rule equivp_transp[OF int_equivp])+ −
apply(rule times_int_raw_fst)+ −
apply(assumption)+ −
apply(rule times_int_raw_snd)+ −
apply(assumption)+ −
done+ −
+ −
lemma plus_assoc_raw:+ −
shows "plus_int_raw (plus_int_raw i j) k \<approx> plus_int_raw i (plus_int_raw j k)"+ −
by (cases i, cases j, cases k) (simp)+ −
+ −
lemma plus_sym_raw:+ −
shows "plus_int_raw i j \<approx> plus_int_raw j i"+ −
by (cases i, cases j) (simp)+ −
+ −
lemma plus_zero_raw:+ −
shows "plus_int_raw (0, 0) i \<approx> i"+ −
by (cases i) (simp)+ −
+ −
lemma plus_minus_zero_raw:+ −
shows "plus_int_raw (uminus_int_raw i) i \<approx> (0, 0)"+ −
by (cases i) (simp)+ −
+ −
lemma times_assoc_raw:+ −
shows "times_int_raw (times_int_raw i j) k \<approx> times_int_raw i (times_int_raw j k)"+ −
by (cases i, cases j, cases k)+ −
(simp add: algebra_simps)+ −
+ −
lemma times_sym_raw:+ −
shows "times_int_raw i j \<approx> times_int_raw j i"+ −
by (cases i, cases j) (simp add: algebra_simps)+ −
+ −
lemma times_one_raw:+ −
shows "times_int_raw (1, 0) i \<approx> i"+ −
by (cases i) (simp)+ −
+ −
lemma times_plus_comm_raw:+ −
shows "times_int_raw (plus_int_raw i j) k \<approx> plus_int_raw (times_int_raw i k) (times_int_raw j k)"+ −
by (cases i, cases j, cases k)+ −
(simp add: algebra_simps)+ −
+ −
lemma one_zero_distinct:+ −
shows "\<not> (0, 0) \<approx> ((1::nat), (0::nat))"+ −
by simp+ −
+ −
text{* The integers form a @{text comm_ring_1}*}+ −
+ −
instance int :: comm_ring_1+ −
proof+ −
fix i j k :: int+ −
show "(i + j) + k = i + (j + k)"+ −
by (lifting plus_assoc_raw)+ −
show "i + j = j + i"+ −
by (lifting plus_sym_raw)+ −
show "0 + i = (i::int)"+ −
by (lifting plus_zero_raw)+ −
show "- i + i = 0"+ −
by (lifting plus_minus_zero_raw)+ −
show "i - j = i + - j"+ −
by (simp add: minus_int_def)+ −
show "(i * j) * k = i * (j * k)"+ −
by (lifting times_assoc_raw)+ −
show "i * j = j * i"+ −
by (lifting times_sym_raw)+ −
show "1 * i = i"+ −
by (lifting times_one_raw)+ −
show "(i + j) * k = i * k + j * k"+ −
by (lifting times_plus_comm_raw)+ −
show "0 \<noteq> (1::int)"+ −
by (lifting one_zero_distinct)+ −
qed+ −
+ −
lemma plus_int_raw_rsp_aux:+ −
assumes a: "a \<approx> b" "c \<approx> d"+ −
shows "plus_int_raw a c \<approx> plus_int_raw b d"+ −
using a+ −
by (cases a, cases b, cases c, cases d)+ −
(simp)+ −
+ −
lemma add_abs_int:+ −
"(abs_int (x,y)) + (abs_int (u,v)) =+ −
(abs_int (x + u, y + v))"+ −
apply(simp add: plus_int_def id_simps)+ −
apply(fold plus_int_raw.simps)+ −
apply(rule Quotient_rel_abs[OF Quotient_int])+ −
apply(rule plus_int_raw_rsp_aux)+ −
apply(simp_all add: rep_abs_rsp_left[OF Quotient_int])+ −
done+ −
+ −
definition int_of_nat_raw:+ −
"int_of_nat_raw m = (m :: nat, 0 :: nat)"+ −
+ −
quotient_definition+ −
"int_of_nat :: nat \<Rightarrow> int" is "int_of_nat_raw"+ −
+ −
lemma[quot_respect]:+ −
shows "(op = ===> op \<approx>) int_of_nat_raw int_of_nat_raw"+ −
by (simp add: equivp_reflp[OF int_equivp])+ −
+ −
lemma int_of_nat:+ −
shows "of_nat m = int_of_nat m"+ −
by (induct m)+ −
(simp_all add: zero_int_def one_int_def int_of_nat_def int_of_nat_raw add_abs_int)+ −
+ −
lemma le_antisym_raw:+ −
shows "le_int_raw i j \<Longrightarrow> le_int_raw j i \<Longrightarrow> i \<approx> j"+ −
by (cases i, cases j) (simp)+ −
+ −
lemma le_refl_raw:+ −
shows "le_int_raw i i"+ −
by (cases i) (simp)+ −
+ −
lemma le_trans_raw:+ −
shows "le_int_raw i j \<Longrightarrow> le_int_raw j k \<Longrightarrow> le_int_raw i k"+ −
by (cases i, cases j, cases k) (simp)+ −
+ −
lemma le_cases_raw:+ −
shows "le_int_raw i j \<or> le_int_raw j i"+ −
by (cases i, cases j)+ −
(simp add: linorder_linear)+ −
+ −
instance int :: linorder+ −
proof+ −
fix i j k :: int+ −
show antisym: "i \<le> j \<Longrightarrow> j \<le> i \<Longrightarrow> i = j"+ −
by (lifting le_antisym_raw)+ −
show "(i < j) = (i \<le> j \<and> \<not> j \<le> i)"+ −
by (auto simp add: less_int_def dest: antisym)+ −
show "i \<le> i"+ −
by (lifting le_refl_raw)+ −
show "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k"+ −
by (lifting le_trans_raw)+ −
show "i \<le> j \<or> j \<le> i"+ −
by (lifting le_cases_raw)+ −
qed+ −
+ −
instantiation int :: distrib_lattice+ −
begin+ −
+ −
definition+ −
"(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min"+ −
+ −
definition+ −
"(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max"+ −
+ −
instance+ −
by intro_classes+ −
(auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1)+ −
+ −
end+ −
+ −
lemma le_plus_int_raw:+ −
shows "le_int_raw i j \<Longrightarrow> le_int_raw (plus_int_raw k i) (plus_int_raw k j)"+ −
by (cases i, cases j, cases k) (simp)+ −
+ −
instance int :: ordered_cancel_ab_semigroup_add+ −
proof+ −
fix i j k :: int+ −
show "i \<le> j \<Longrightarrow> k + i \<le> k + j"+ −
by (lifting le_plus_int_raw)+ −
qed+ −
+ −
abbreviation+ −
"less_int_raw i j \<equiv> le_int_raw i j \<and> \<not>(i \<approx> j)"+ −
+ −
lemma zmult_zless_mono2_lemma:+ −
fixes i j::int+ −
and k::nat+ −
shows "i < j \<Longrightarrow> 0 < k \<Longrightarrow> of_nat k * i < of_nat k * j"+ −
apply(induct "k")+ −
apply(simp)+ −
apply(case_tac "k = 0")+ −
apply(simp_all add: left_distrib add_strict_mono)+ −
done+ −
+ −
lemma zero_le_imp_eq_int_raw:+ −
fixes k::"(nat \<times> nat)"+ −
shows "less_int_raw (0, 0) k \<Longrightarrow> (\<exists>n > 0. k \<approx> int_of_nat_raw n)"+ −
apply(cases k)+ −
apply(simp add:int_of_nat_raw)+ −
apply(auto)+ −
apply(rule_tac i="b" and j="a" in less_Suc_induct)+ −
apply(auto)+ −
done+ −
+ −
lemma zero_le_imp_eq_int:+ −
fixes k::int+ −
shows "0 < k \<Longrightarrow> \<exists>n > 0. k = of_nat n"+ −
unfolding less_int_def int_of_nat+ −
by (lifting zero_le_imp_eq_int_raw)+ −
+ −
lemma zmult_zless_mono2:+ −
fixes i j k::int+ −
assumes a: "i < j" "0 < k"+ −
shows "k * i < k * j"+ −
using a+ −
by (drule_tac zero_le_imp_eq_int) (auto simp add: zmult_zless_mono2_lemma)+ −
+ −
text{*The integers form an ordered integral domain*}+ −
instance int :: linordered_idom+ −
proof+ −
fix i j k :: int+ −
show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"+ −
by (rule zmult_zless_mono2)+ −
show "\<bar>i\<bar> = (if i < 0 then -i else i)"+ −
by (simp only: zabs_def)+ −
show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"+ −
by (simp only: zsgn_def)+ −
qed+ −
+ −
lemmas int_distrib =+ −
left_distrib [of "z1::int" "z2" "w", standard]+ −
right_distrib [of "w::int" "z1" "z2", standard]+ −
left_diff_distrib [of "z1::int" "z2" "w", standard]+ −
right_diff_distrib [of "w::int" "z1" "z2", standard]+ −
minus_add_distrib[of "z1::int" "z2", standard]+ −
+ −
lemma int_induct_raw:+ −
assumes a: "P (0::nat, 0)"+ −
and b: "\<And>i. P i \<Longrightarrow> P (plus_int_raw i (1, 0))"+ −
and c: "\<And>i. P i \<Longrightarrow> P (plus_int_raw i (uminus_int_raw (1, 0)))"+ −
shows "P x"+ −
proof (cases x, clarify)+ −
fix a b+ −
show "P (a, b)"+ −
proof (induct a arbitrary: b rule: Nat.induct)+ −
case zero+ −
show "P (0, b)" using assms by (induct b) auto+ −
next+ −
case (Suc n)+ −
then show ?case using assms by auto+ −
qed+ −
qed+ −
+ −
lemma int_induct:+ −
fixes x :: int+ −
assumes a: "P 0"+ −
and b: "\<And>i. P i \<Longrightarrow> P (i + 1)"+ −
and c: "\<And>i. P i \<Longrightarrow> P (i - 1)"+ −
shows "P x"+ −
using a b c unfolding minus_int_def+ −
by (lifting int_induct_raw)+ −
+ −
text {* Magnitide of an Integer, as a Natural Number: @{term nat} *}+ −
+ −
definition+ −
"int_to_nat_raw \<equiv> \<lambda>(x, y).x - (y::nat)"+ −
+ −
quotient_definition+ −
"int_to_nat::int \<Rightarrow> nat"+ −
is+ −
"int_to_nat_raw"+ −
+ −
lemma [quot_respect]:+ −
shows "(intrel ===> op =) int_to_nat_raw int_to_nat_raw"+ −
by (auto iff: int_to_nat_raw_def)+ −
+ −
lemma nat_le_eq_zle_raw:+ −
assumes a: "less_int_raw (0, 0) w \<or> le_int_raw (0, 0) z"+ −
shows "(int_to_nat_raw w \<le> int_to_nat_raw z) = (le_int_raw w z)"+ −
using a+ −
by (cases w, cases z) (auto simp add: int_to_nat_raw_def)+ −
+ −
lemma nat_le_eq_zle:+ −
fixes w z::"int"+ −
shows "0 < w \<or> 0 \<le> z \<Longrightarrow> (int_to_nat w \<le> int_to_nat z) = (w \<le> z)"+ −
unfolding less_int_def+ −
by (lifting nat_le_eq_zle_raw)+ −
+ −
end+ −