the chk-functions in quotient_term also simplify the result according to the id_simps; had to remove id_def from this theorem list though; this caused in FSet3 that relied on this rule; the problem is marked with "ID PROBLEM"
theory AbsRepTestimports "../QuotMain" "../QuotList" "../QuotOption" "../QuotSum" "../QuotProd" ListbeginML {* open Quotient_Term *}ML {*fun test_funs flag ctxt (rty, qty) = (absrep_fun_chk flag ctxt (rty, qty) |> Syntax.string_of_term ctxt |> writeln; equiv_relation_chk ctxt (rty, qty) |> Syntax.string_of_term ctxt |> writeln)*}definition erel1 (infixl "\<approx>1" 50)where "erel1 \<equiv> \<lambda>xs ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"quotient_type 'a fset = "'a list" / erel1 apply(rule equivpI) unfolding erel1_def reflp_def symp_def transp_def by autodefinition erel2 (infixl "\<approx>2" 50)where "erel2 \<equiv> \<lambda>(xs::('a * 'a) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"quotient_type 'a foo = "('a * 'a) list" / erel2 apply(rule equivpI) unfolding erel2_def reflp_def symp_def transp_def by autodefinition erel3 (infixl "\<approx>3" 50)where "erel3 \<equiv> \<lambda>(xs::('a * int) list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"quotient_type 'a bar = "('a * int) list" / "erel3" apply(rule equivpI) unfolding erel3_def reflp_def symp_def transp_def by autofun intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infixl "\<approx>4" 50)where "intrel (x, y) (u, v) = (x + v = u + y)"quotient_type myint = "nat \<times> nat" / intrel by (auto simp add: equivp_def expand_fun_eq)ML {*test_funs absF @{context} (@{typ "nat \<times> nat"}, @{typ "myint"})*}ML {*test_funs absF @{context} (@{typ "('a * 'a) list"}, @{typ "'a foo"})*}ML {*test_funs repF @{context} (@{typ "(('a * 'a) list * 'b)"}, @{typ "('a foo * 'b)"})*}ML {*test_funs absF @{context} (@{typ "(('a list) * int) list"}, @{typ "('a fset) bar"})*}ML {*test_funs absF @{context} (@{typ "('a list)"}, @{typ "('a fset)"})*}ML {*test_funs absF @{context} (@{typ "('a list) list"}, @{typ "('a fset) fset"})*}ML {*test_funs absF @{context} (@{typ "((nat * nat) list) list"}, @{typ "((myint) fset) fset"})*}ML {*test_funs absF @{context} (@{typ "(('a * 'a) list) list"}, @{typ "(('a * 'a) fset) fset"})*}ML {*test_funs absF @{context} (@{typ "(nat * nat) list"}, @{typ "myint fset"})*}ML {*test_funs absF @{context} (@{typ "('a list) list \<Rightarrow> 'a list"}, @{typ "('a fset) fset \<Rightarrow> 'a fset"})*}lemma OO_sym_inv: assumes sr: "symp r" and ss: "symp s" shows "(r OO s) x y = (s OO r) y x" using sr ss unfolding symp_def apply (metis pred_comp.intros pred_compE ss symp_def) donelemma abs_o_rep: assumes a: "Quotient r absf repf" shows "absf o repf = id" apply(rule ext) apply(simp add: Quotient_abs_rep[OF a]) donelemma set_in_eq: "(\<forall>e. ((e \<in> A) \<longleftrightarrow> (e \<in> B))) \<equiv> A = B" apply (rule eq_reflection) apply auto donelemma map_rel_cong: "b \<approx>1 ba \<Longrightarrow> map f b \<approx>1 map f ba" unfolding erel1_def apply(simp only: set_map set_in_eq) donelemma quotient_compose_list_gen_pre: assumes a: "equivp r2" and b: "Quotient r2 abs2 rep2" shows "(list_rel r2 OO op \<approx>1 OO list_rel r2) r s = ((list_rel r2 OO op \<approx>1 OO list_rel r2) r r \<and> (list_rel r2 OO op \<approx>1 OO list_rel r2) s s \<and> abs_fset (map abs2 r) = abs_fset (map abs2 s))" apply rule apply rule apply rule apply (rule list_rel_refl) apply (metis equivp_def a) apply rule apply (rule equivp_reflp[OF fset_equivp]) apply (rule list_rel_refl) apply (metis equivp_def a) apply(rule) apply rule apply (rule list_rel_refl) apply (metis equivp_def a) apply rule apply (rule equivp_reflp[OF fset_equivp]) apply (rule list_rel_refl) apply (metis equivp_def a) apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s") apply (metis Quotient_rel[OF Quotient_fset]) apply (auto)[1] apply (subgoal_tac "map abs2 r = map abs2 b") prefer 2 apply (metis Quotient_rel[OF list_quotient[OF b]]) apply (subgoal_tac "map abs2 s = map abs2 ba") prefer 2 apply (metis Quotient_rel[OF list_quotient[OF b]]) apply (simp add: map_rel_cong) apply rule apply (rule rep_abs_rsp[of "list_rel r2" "map abs2"]) apply (rule list_quotient) apply (rule b) apply (rule list_rel_refl) apply (metis equivp_def a) apply rule prefer 2 apply (rule rep_abs_rsp_left[of "list_rel r2" "map abs2"]) apply (rule list_quotient) apply (rule b) apply (rule list_rel_refl) apply (metis equivp_def a) apply (erule conjE)+ apply (subgoal_tac "map abs2 r \<approx>1 map abs2 s") apply (rule map_rel_cong) apply (assumption) apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp a b) donelemma quotient_compose_list_gen: assumes a: "Quotient r2 abs2 rep2" and b: "equivp r2" (* reflp is not enough *) shows "Quotient ((list_rel r2) OO (op \<approx>1) OO (list_rel r2)) (abs_fset \<circ> (map abs2)) ((map rep2) \<circ> rep_fset)" unfolding Quotient_def comp_def apply (rule)+ apply (simp add: abs_o_rep[OF a] id_simps Quotient_abs_rep[OF Quotient_fset]) apply (rule) apply (rule) apply (rule) apply (rule list_rel_refl) apply (metis b equivp_def) apply (rule) apply (rule equivp_reflp[OF fset_equivp]) apply (rule list_rel_refl) apply (metis b equivp_def) apply rule apply rule apply(rule quotient_compose_list_gen_pre[OF b a]) done(* This is the general statement but the types of abs2 and rep2 are wrong as can be seen in following exanples *)lemma quotient_compose_general: assumes a2: "Quotient r1 abs1 rep1" and "Quotient r2 abs2 rep2" shows "Quotient ((list_rel r2) OO r1 OO (list_rel r2)) (abs1 \<circ> (map abs2)) ((map rep2) \<circ> rep1)"sorrythm quotient_compose_list_gen[OF Quotient_fset fset_equivp]thm quotient_compose_general[OF Quotient_fset](* Doesn't work: *)(* thm quotient_compose_general[OF Quotient_fset Quotient_fset] *)end