theory Lambda
imports
"../Nominal2"
"~~/src/HOL/Library/Monad_Syntax"
begin
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100)
section {* Simple examples from Norrish 2004 *}
nominal_primrec
is_app :: "lam \<Rightarrow> bool"
where
"is_app (Var x) = False"
| "is_app (App t1 t2) = True"
| "is_app (Lam [x]. t) = False"
apply(simp add: eqvt_def is_app_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
apply(auto)[3]
apply(all_trivials)
done
termination (eqvt) by lexicographic_order
thm is_app_def
thm is_app.eqvt
thm eqvts
nominal_primrec
rator :: "lam \<Rightarrow> lam option"
where
"rator (Var x) = None"
| "rator (App t1 t2) = Some t1"
| "rator (Lam [x]. t) = None"
apply(simp add: eqvt_def rator_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
apply(auto)[3]
apply(simp_all)
done
termination (eqvt) by lexicographic_order
nominal_primrec
rand :: "lam \<Rightarrow> lam option"
where
"rand (Var x) = None"
| "rand (App t1 t2) = Some t2"
| "rand (Lam [x]. t) = None"
apply(simp add: eqvt_def rand_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
apply(auto)[3]
apply(simp_all)
done
termination (eqvt) by lexicographic_order
nominal_primrec
is_eta_nf :: "lam \<Rightarrow> bool"
where
"is_eta_nf (Var x) = True"
| "is_eta_nf (App t1 t2) = (is_eta_nf t1 \<and> is_eta_nf t2)"
| "is_eta_nf (Lam [x]. t) = (is_eta_nf t \<and>
((is_app t \<and> rand t = Some (Var x)) \<longrightarrow> atom x \<in> supp (rator t)))"
apply(simp add: eqvt_def is_eta_nf_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
apply(auto)[3]
apply(simp_all)
apply(erule_tac c="()" in Abs_lst1_fcb2')
apply(simp_all add: pure_fresh fresh_star_def)[3]
apply(simp add: eqvt_at_def conj_eqvt)
apply(perm_simp)
apply(rule refl)
apply(simp add: eqvt_at_def conj_eqvt)
apply(perm_simp)
apply(rule refl)
done
termination (eqvt) by lexicographic_order
nominal_datatype path = Left | Right | In
section {* Paths to a free variables *}
instance path :: pure
apply(default)
apply(induct_tac "x::path" rule: path.induct)
apply(simp_all)
done
nominal_primrec
var_pos :: "name \<Rightarrow> lam \<Rightarrow> (path list) set"
where
"var_pos y (Var x) = (if y = x then {[]} else {})"
| "var_pos y (App t1 t2) = (Cons Left ` (var_pos y t1)) \<union> (Cons Right ` (var_pos y t2))"
| "atom x \<sharp> y \<Longrightarrow> var_pos y (Lam [x]. t) = (Cons In ` (var_pos y t))"
apply(simp add: eqvt_def var_pos_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(case_tac x)
apply(rule_tac y="b" and c="a" in lam.strong_exhaust)
apply(auto simp add: fresh_star_def)[3]
apply(simp_all)
apply(erule conjE)+
apply(erule_tac Abs_lst1_fcb2)
apply(simp add: pure_fresh)
apply(simp add: fresh_star_def)
apply(simp add: eqvt_at_def image_eqvt perm_supp_eq)
apply(perm_simp)
apply(rule refl)
apply(simp add: eqvt_at_def image_eqvt perm_supp_eq)
apply(perm_simp)
apply(rule refl)
done
termination (eqvt) by lexicographic_order
lemma var_pos1:
assumes "atom y \<notin> supp t"
shows "var_pos y t = {}"
using assms
apply(induct t rule: var_pos.induct)
apply(simp_all add: lam.supp supp_at_base fresh_at_base)
done
lemma var_pos2:
shows "var_pos y (Lam [y].t) = {}"
apply(rule var_pos1)
apply(simp add: lam.supp)
done
text {* strange substitution operation *}
nominal_primrec
subst' :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_ [_ ::== _]" [90, 90, 90] 90)
where
"(Var x)[y ::== s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::== s] = App (t1[y ::== s]) (t2[y ::== s])"
| "atom x \<sharp> (y, s) \<Longrightarrow> (Lam [x]. t)[y ::== s] = Lam [x].(t[y ::== (App (Var y) s)])"
apply(simp add: eqvt_def subst'_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(case_tac x)
apply(rule_tac y="a" and c="(b, c)" in lam.strong_exhaust)
apply(auto simp add: fresh_star_def)[3]
apply(simp_all)
apply(erule conjE)+
apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp_all add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
termination (eqvt) by lexicographic_order
section {* free name function *}
text {* first returns an atom list *}
nominal_primrec
frees_lst :: "lam \<Rightarrow> atom list"
where
"frees_lst (Var x) = [atom x]"
| "frees_lst (App t1 t2) = frees_lst t1 @ frees_lst t2"
| "frees_lst (Lam [x]. t) = removeAll (atom x) (frees_lst t)"
unfolding eqvt_def
unfolding frees_lst_graph_def
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
apply(auto)
apply (erule_tac c="()" in Abs_lst1_fcb2)
apply(simp add: supp_removeAll fresh_def)
apply(simp add: fresh_star_def fresh_Unit)
apply(simp add: eqvt_at_def removeAll_eqvt atom_eqvt)
apply(simp add: eqvt_at_def removeAll_eqvt atom_eqvt)
done
termination (eqvt) by lexicographic_order
text {* a small test lemma *}
lemma shows "supp t = set (frees_lst t)"
by (induct t rule: frees_lst.induct) (simp_all add: lam.supp supp_at_base)
text {* second returns an atom set - therefore needs an invariant *}
nominal_primrec (invariant "\<lambda>x (y::atom set). finite y")
frees_set :: "lam \<Rightarrow> atom set"
where
"frees_set (Var x) = {atom x}"
| "frees_set (App t1 t2) = frees_set t1 \<union> frees_set t2"
| "frees_set (Lam [x]. t) = (frees_set t) - {atom x}"
apply(simp add: eqvt_def frees_set_graph_def)
apply(rule, perm_simp, rule)
apply(erule frees_set_graph.induct)
apply(auto)[9]
apply(rule_tac y="x" in lam.exhaust)
apply(auto)[3]
apply(simp)
apply(erule_tac c="()" in Abs_lst1_fcb2)
apply(simp add: fresh_minus_atom_set)
apply(simp add: fresh_star_def fresh_Unit)
apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
done
termination (eqvt)
by lexicographic_order
lemma "frees_set t = supp t"
by (induct rule: frees_set.induct) (simp_all add: lam.supp supp_at_base)
section {* height function *}
nominal_primrec
height :: "lam \<Rightarrow> int"
where
"height (Var x) = 1"
| "height (App t1 t2) = max (height t1) (height t2) + 1"
| "height (Lam [x].t) = height t + 1"
apply(simp add: eqvt_def height_graph_def)
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
apply(auto)
apply (erule_tac c="()" in Abs_lst1_fcb2)
apply(simp_all add: fresh_def pure_supp eqvt_at_def fresh_star_def)
done
termination (eqvt)
by lexicographic_order
thm height.simps
section {* capture-avoiding substitution *}
nominal_primrec
subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_ [_ ::= _]" [90, 90, 90] 90)
where
"(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "atom x \<sharp> (y, s) \<Longrightarrow> (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])"
unfolding eqvt_def subst_graph_def
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply(auto simp add: lam.distinct lam.eq_iff)
apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
apply(blast)+
apply(simp_all add: fresh_star_def fresh_Pair_elim)
apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp_all add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
termination (eqvt)
by lexicographic_order
thm subst.eqvt
lemma forget:
shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
by (nominal_induct t avoiding: x s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
text {* same lemma but with subst.induction *}
lemma forget2:
shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
by (induct t x s rule: subst.induct)
(auto simp add: lam.fresh fresh_at_base fresh_Pair)
lemma fresh_fact:
fixes z::"name"
assumes a: "atom z \<sharp> s"
and b: "z = y \<or> atom z \<sharp> t"
shows "atom z \<sharp> t[y ::= s]"
using a b
by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
lemma substitution_lemma:
assumes a: "x \<noteq> y" "atom x \<sharp> u"
shows "t[x ::= s][y ::= u] = t[y ::= u][x ::= s[y ::= u]]"
using a
by (nominal_induct t avoiding: x y s u rule: lam.strong_induct)
(auto simp add: fresh_fact forget)
lemma subst_rename:
assumes a: "atom y \<sharp> t"
shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet>t)[y ::= s]"
using a
apply (nominal_induct t avoiding: x y s rule: lam.strong_induct)
apply (auto simp add: lam.fresh fresh_at_base)
done
lemma height_ge_one:
shows "1 \<le> (height e)"
by (induct e rule: lam.induct) (simp_all)
theorem height_subst:
shows "height (e[x::=e']) \<le> ((height e) - 1) + (height e')"
proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have "1 \<le> height e'" by (rule height_ge_one)
then show "height (Var y[x::=e']) \<le> height (Var y) - 1 + height e'" by simp
next
case (Lam y e1)
hence ih: "height (e1[x::=e']) \<le> ((height e1) - 1) + (height e')" by simp
moreover
have vc: "atom y\<sharp>x" "atom y\<sharp>e'" by fact+ (* usual variable convention *)
ultimately show "height ((Lam [y]. e1)[x::=e']) \<le> height (Lam [y]. e1) - 1 + height e'" by simp
next
case (App e1 e2)
hence ih1: "height (e1[x::=e']) \<le> ((height e1) - 1) + (height e')"
and ih2: "height (e2[x::=e']) \<le> ((height e2) - 1) + (height e')" by simp_all
then show "height ((App e1 e2)[x::=e']) \<le> height (App e1 e2) - 1 + height e'" by simp
qed
subsection {* single-step beta-reduction *}
inductive
beta :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>b _" [80,80] 80)
where
b1[intro]: "t1 \<longrightarrow>b t2 \<Longrightarrow> App t1 s \<longrightarrow>b App t2 s"
| b2[intro]: "s1 \<longrightarrow>b s2 \<Longrightarrow> App t s1 \<longrightarrow>b App t s2"
| b3[intro]: "t1 \<longrightarrow>b t2 \<Longrightarrow> Lam [x]. t1 \<longrightarrow>b Lam [x]. t2"
| b4[intro]: "atom x \<sharp> s \<Longrightarrow> App (Lam [x]. t) s \<longrightarrow>b t[x ::= s]"
equivariance beta
nominal_inductive beta
avoids b4: "x"
by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
text {* One-Reduction *}
inductive
One :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>1 _" [80,80] 80)
where
o1[intro]: "Var x \<longrightarrow>1 Var x"
| o2[intro]: "\<lbrakk>t1 \<longrightarrow>1 t2; s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> App t1 s1 \<longrightarrow>1 App t2 s2"
| o3[intro]: "t1 \<longrightarrow>1 t2 \<Longrightarrow> Lam [x].t1 \<longrightarrow>1 Lam [x].t2"
| o4[intro]: "\<lbrakk>atom x \<sharp> (s1, s2); t1 \<longrightarrow>1 t2; s1 \<longrightarrow>1 s2\<rbrakk> \<Longrightarrow> App (Lam [x].t1) s1 \<longrightarrow>1 t2[x ::= s2]"
equivariance One
nominal_inductive One
avoids o3: "x"
| o4: "x"
by (simp_all add: fresh_star_def fresh_Pair lam.fresh fresh_fact)
lemma One_refl:
shows "t \<longrightarrow>1 t"
by (nominal_induct t rule: lam.strong_induct) (auto)
lemma One_subst:
assumes a: "t1 \<longrightarrow>1 t2" "s1 \<longrightarrow>1 s2"
shows "t1[x ::= s1] \<longrightarrow>1 t2[x ::= s2]"
using a
apply(nominal_induct t1 t2 avoiding: s1 s2 x rule: One.strong_induct)
apply(auto simp add: substitution_lemma fresh_at_base fresh_fact fresh_Pair)
done
lemma better_o4_intro:
assumes a: "t1 \<longrightarrow>1 t2" "s1 \<longrightarrow>1 s2"
shows "App (Lam [x]. t1) s1 \<longrightarrow>1 t2[ x ::= s2]"
proof -
obtain y::"name" where fs: "atom y \<sharp> (x, t1, s1, t2, s2)" by (rule obtain_fresh)
have "App (Lam [x]. t1) s1 = App (Lam [y]. ((y \<leftrightarrow> x) \<bullet> t1)) s1" using fs
by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
also have "\<dots> \<longrightarrow>1 ((y \<leftrightarrow> x) \<bullet> t2)[y ::= s2]" using fs a by (auto simp add: One.eqvt)
also have "\<dots> = t2[x ::= s2]" using fs by (simp add: subst_rename[symmetric])
finally show "App (Lam [x].t1) s1 \<longrightarrow>1 t2[x ::= s2]" by simp
qed
section {* Locally Nameless Terms *}
nominal_datatype ln =
LNBnd nat
| LNVar name
| LNApp ln ln
| LNLam ln
fun
lookup :: "name list \<Rightarrow> nat \<Rightarrow> name \<Rightarrow> ln"
where
"lookup [] n x = LNVar x"
| "lookup (y # ys) n x = (if x = y then LNBnd n else (lookup ys (n + 1) x))"
lemma supp_lookup:
shows "supp (lookup xs n x) \<subseteq> {atom x}"
apply(induct arbitrary: n rule: lookup.induct)
apply(simp add: ln.supp supp_at_base)
apply(simp add: ln.supp pure_supp)
done
lemma supp_lookup_in:
shows "x \<in> set xs \<Longrightarrow> supp (lookup xs n x) = {}"
by (induct arbitrary: n rule: lookup.induct)(auto simp add: ln.supp pure_supp)
lemma supp_lookup_notin:
shows "x \<notin> set xs \<Longrightarrow> supp (lookup xs n x) = {atom x}"
by (induct arbitrary: n rule: lookup.induct) (auto simp add: ln.supp pure_supp supp_at_base)
lemma supp_lookup_fresh:
shows "atom ` set xs \<sharp>* lookup xs n x"
by (case_tac "x \<in> set xs") (auto simp add: fresh_star_def fresh_def supp_lookup_in supp_lookup_notin)
lemma lookup_eqvt[eqvt]:
shows "(p \<bullet> lookup xs n x) = lookup (p \<bullet> xs) (p \<bullet> n) (p \<bullet> x)"
by (induct xs arbitrary: n) (simp_all add: permute_pure)
text {* Function that translates lambda-terms into locally nameless terms *}
nominal_primrec (invariant "\<lambda>(_, xs) y. atom ` set xs \<sharp>* y")
trans :: "lam \<Rightarrow> name list \<Rightarrow> ln"
where
"trans (Var x) xs = lookup xs 0 x"
| "trans (App t1 t2) xs = LNApp (trans t1 xs) (trans t2 xs)"
| "atom x \<sharp> xs \<Longrightarrow> trans (Lam [x]. t) xs = LNLam (trans t (x # xs))"
apply (simp add: eqvt_def trans_graph_def)
apply (rule, perm_simp, rule)
apply (erule trans_graph.induct)
apply (auto simp add: ln.fresh)[3]
apply (simp add: supp_lookup_fresh)
apply (simp add: fresh_star_def ln.fresh)
apply (simp add: ln.fresh fresh_star_def)
apply(auto)[1]
apply (rule_tac y="a" and c="b" in lam.strong_exhaust)
apply (auto simp add: fresh_star_def)[3]
apply(simp_all)
apply(erule conjE)+
apply (erule_tac c="xsa" in Abs_lst1_fcb2')
apply (simp add: fresh_star_def)
apply (simp add: fresh_star_def)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
termination (eqvt)
by lexicographic_order
text {* count the occurences of lambdas in a term *}
nominal_primrec
cntlams :: "lam \<Rightarrow> nat"
where
"cntlams (Var x) = 0"
| "cntlams (App t1 t2) = (cntlams t1) + (cntlams t2)"
| "cntlams (Lam [x]. t) = Suc (cntlams t)"
apply(simp add: eqvt_def cntlams_graph_def)
apply(rule, perm_simp, rule)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
apply(auto)[3]
apply(all_trivials)
apply(simp)
apply(simp)
apply(erule_tac c="()" in Abs_lst1_fcb2')
apply(simp add: pure_fresh)
apply(simp add: fresh_star_def pure_fresh)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
termination (eqvt)
by lexicographic_order
text {* count the bound-variable occurences in a lambda-term *}
nominal_primrec
cntbvs :: "lam \<Rightarrow> name list \<Rightarrow> nat"
where
"cntbvs (Var x) xs = (if x \<in> set xs then 1 else 0)"
| "cntbvs (App t1 t2) xs = (cntbvs t1 xs) + (cntbvs t2 xs)"
| "atom x \<sharp> xs \<Longrightarrow> cntbvs (Lam [x]. t) xs = cntbvs t (x # xs)"
apply(simp add: eqvt_def cntbvs_graph_def)
apply(rule, perm_simp, rule)
apply(rule TrueI)
apply(case_tac x)
apply(rule_tac y="a" and c="b" in lam.strong_exhaust)
apply(auto simp add: fresh_star_def)[3]
apply(all_trivials)
apply(simp)
apply(simp)
apply(simp)
apply(erule conjE)
apply(erule Abs_lst1_fcb2')
apply(simp add: pure_fresh fresh_star_def)
apply(simp add: fresh_star_def)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
termination (eqvt)
by lexicographic_order
section {* De Bruijn Terms *}
nominal_datatype db =
DBVar nat
| DBApp db db
| DBLam db
instance db :: pure
apply default
apply (induct_tac x rule: db.induct)
apply (simp_all add: permute_pure)
done
lemma fresh_at_list: "atom x \<sharp> xs \<longleftrightarrow> x \<notin> set xs"
unfolding fresh_def supp_set[symmetric]
by (induct xs) (auto simp add: supp_of_finite_insert supp_at_base supp_set_empty)
fun
vindex :: "name list \<Rightarrow> name \<Rightarrow> nat \<Rightarrow> db option"
where
"vindex [] v n = None"
| "vindex (h # t) v n = (if v = h then (Some (DBVar n)) else (vindex t v (Suc n)))"
lemma vindex_eqvt[eqvt]:
"(p \<bullet> vindex l v n) = vindex (p \<bullet> l) (p \<bullet> v) (p \<bullet> n)"
by (induct l arbitrary: n) (simp_all add: permute_pure)
nominal_primrec
transdb :: "lam \<Rightarrow> name list \<Rightarrow> db option"
where
"transdb (Var x) l = vindex l x 0"
| "transdb (App t1 t2) xs =
Option.bind (transdb t1 xs) (\<lambda>d1. Option.bind (transdb t2 xs) (\<lambda>d2. Some (DBApp d1 d2)))"
| "x \<notin> set xs \<Longrightarrow> transdb (Lam [x].t) xs = Option.map DBLam (transdb t (x # xs))"
unfolding eqvt_def transdb_graph_def
apply (rule, perm_simp, rule)
apply(rule TrueI)
apply (case_tac x)
apply (rule_tac y="a" and c="b" in lam.strong_exhaust)
apply (auto simp add: fresh_star_def fresh_at_list)[3]
apply(simp_all)
apply(elim conjE)
apply (erule_tac c="xsa" in Abs_lst1_fcb2')
apply (simp add: pure_fresh)
apply(simp add: fresh_star_def fresh_at_list)
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq eqvts eqvts_raw)+
done
termination (eqvt)
by lexicographic_order
lemma transdb_eqvt[eqvt]:
"p \<bullet> transdb t l = transdb (p \<bullet>t) (p \<bullet>l)"
apply (nominal_induct t avoiding: l rule: lam.strong_induct)
apply (simp add: vindex_eqvt)
apply (simp_all add: permute_pure)
apply (simp add: fresh_at_list)
apply (subst transdb.simps)
apply (simp add: fresh_at_list[symmetric])
apply (drule_tac x="name # l" in meta_spec)
apply auto
done
lemma db_trans_test:
assumes a: "y \<noteq> x"
shows "transdb (Lam [x]. Lam [y]. App (Var x) (Var y)) [] =
Some (DBLam (DBLam (DBApp (DBVar 1) (DBVar 0))))"
using a by simp
lemma supp_subst:
shows "supp (t[x ::= s]) \<subseteq> (supp t - {atom x}) \<union> supp s"
by (induct t x s rule: subst.induct) (auto simp add: lam.supp supp_at_base)
lemma var_fresh_subst:
"atom x \<sharp> s \<Longrightarrow> atom x \<sharp> (t[x ::= s])"
by (induct t x s rule: subst.induct) (auto simp add: lam.supp lam.fresh fresh_at_base)
end