Attic/Quot/quotient_term.ML
author Christian Urban <urbanc@in.tum.de>
Tue, 28 Sep 2010 05:56:11 -0400
changeset 2494 11133eb76f61
parent 2317 7412424213ec
permissions -rw-r--r--
added Foo1 to explore a contrived example

(*  Title:      HOL/Tools/Quotient/quotient_term.thy
    Author:     Cezary Kaliszyk and Christian Urban

Constructs terms corresponding to goals from lifting theorems to
quotient types.
*)

signature QUOTIENT_TERM =
sig
  datatype flag = AbsF | RepF

  val absrep_fun: flag -> Proof.context -> typ * typ -> term
  val absrep_fun_chk: flag -> Proof.context -> typ * typ -> term

  (* Allows Nitpick to represent quotient types as single elements from raw type *)
  val absrep_const_chk: flag -> Proof.context -> string -> term

  val equiv_relation: Proof.context -> typ * typ -> term
  val equiv_relation_chk: Proof.context -> typ * typ -> term

  val regularize_trm: Proof.context -> term * term -> term
  val regularize_trm_chk: Proof.context -> term * term -> term

  val inj_repabs_trm: Proof.context -> term * term -> term
  val inj_repabs_trm_chk: Proof.context -> term * term -> term

  val quotient_lift_const: string * term -> local_theory -> term
  val quotient_lift_all: Proof.context -> term -> term
end;

structure Quotient_Term: QUOTIENT_TERM =
struct

open Quotient_Info;

exception LIFT_MATCH of string



(*** Aggregate Rep/Abs Function ***)


(* The flag RepF is for types in negative position; AbsF is for types
   in positive position. Because of this, function types need to be
   treated specially, since there the polarity changes.
*)

datatype flag = AbsF | RepF

fun negF AbsF = RepF
  | negF RepF = AbsF

fun is_identity (Const (@{const_name "id"}, _)) = true
  | is_identity _ = false

fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)

fun mk_fun_compose flag (trm1, trm2) =
  case flag of
    AbsF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
  | RepF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1

fun get_mapfun ctxt s =
let
  val thy = ProofContext.theory_of ctxt
  val exn = error ("No map function for type " ^ quote s ^ " found.")
  val mapfun = #mapfun (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
in
  Const (mapfun, dummyT)
end

(* makes a Free out of a TVar *)
fun mk_Free (TVar ((x, i), _)) = Free (unprefix "'" x ^ string_of_int i, dummyT)

(* produces an aggregate map function for the
   rty-part of a quotient definition; abstracts
   over all variables listed in vs (these variables
   correspond to the type variables in rty)

   for example for: (?'a list * ?'b)
   it produces:     %a b. prod_map (map a) b
*)
fun mk_mapfun ctxt vs rty =
let
  val vs' = map (mk_Free) vs

  fun mk_mapfun_aux rty =
    case rty of
      TVar _ => mk_Free rty
    | Type (_, []) => mk_identity rty
    | Type (s, tys) => list_comb (get_mapfun ctxt s, map mk_mapfun_aux tys)
    | _ => raise (error "mk_mapfun (default)")
in
  fold_rev Term.lambda vs' (mk_mapfun_aux rty)
end

(* looks up the (varified) rty and qty for
   a quotient definition
*)
fun get_rty_qty ctxt s =
let
  val thy = ProofContext.theory_of ctxt
  val exn = error ("No quotient type " ^ quote s ^ " found.")
  val qdata = (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
in
  (#rtyp qdata, #qtyp qdata)
end

(* takes two type-environments and looks
   up in both of them the variable v, which
   must be listed in the environment
*)
fun double_lookup rtyenv qtyenv v =
let
  val v' = fst (dest_TVar v)
in
  (snd (the (Vartab.lookup rtyenv v')), snd (the (Vartab.lookup qtyenv v')))
end

(* matches a type pattern with a type *)
fun match ctxt err ty_pat ty =
let
  val thy = ProofContext.theory_of ctxt
in
  Sign.typ_match thy (ty_pat, ty) Vartab.empty
  handle MATCH_TYPE => err ctxt ty_pat ty
end

(* produces the rep or abs constant for a qty *)
fun absrep_const flag ctxt qty_str =
let
  val thy = ProofContext.theory_of ctxt
  val qty_name = Long_Name.base_name qty_str
in
  case flag of
    AbsF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
  | RepF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
end

(* Lets Nitpick represent elements of quotient types as elements of the raw type *)
fun absrep_const_chk flag ctxt qty_str =
  Syntax.check_term ctxt (absrep_const flag ctxt qty_str)

fun absrep_match_err ctxt ty_pat ty =
let
  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
  val ty_str = Syntax.string_of_typ ctxt ty
in
  raise error (cat_lines
    ["absrep_fun (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
end


(** generation of an aggregate absrep function **)

(* - In case of equal types we just return the identity.

   - In case of TFrees we also return the identity.

   - In case of function types we recurse taking
     the polarity change into account.

   - If the type constructors are equal, we recurse for the
     arguments and build the appropriate map function.

   - If the type constructors are unequal, there must be an
     instance of quotient types:

       - we first look up the corresponding rty_pat and qty_pat
         from the quotient definition; the arguments of qty_pat
         must be some distinct TVars
       - we then match the rty_pat with rty and qty_pat with qty;
         if matching fails the types do not correspond -> error
       - the matching produces two environments; we look up the
         assignments for the qty_pat variables and recurse on the
         assignments
       - we prefix the aggregate map function for the rty_pat,
         which is an abstraction over all type variables
       - finally we compose the result with the appropriate
         absrep function in case at least one argument produced
         a non-identity function /
         otherwise we just return the appropriate absrep
         function

     The composition is necessary for types like

        ('a list) list / ('a foo) foo

     The matching is necessary for types like

        ('a * 'a) list / 'a bar

     The test is necessary in order to eliminate superfluous
     identity maps.
*)

fun absrep_fun flag ctxt (rty, qty) =
  if rty = qty
  then mk_identity rty
  else
    case (rty, qty) of
      (Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
        let
          val arg1 = absrep_fun (negF flag) ctxt (ty1, ty1')
          val arg2 = absrep_fun flag ctxt (ty2, ty2')
        in
          list_comb (get_mapfun ctxt "fun", [arg1, arg2])
        end
    | (Type (s, tys), Type (s', tys')) =>
        if s = s'
        then
           let
             val args = map (absrep_fun flag ctxt) (tys ~~ tys')
           in
             list_comb (get_mapfun ctxt s, args)
           end
        else
           let
             val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
             val rtyenv = match ctxt absrep_match_err rty_pat rty
             val qtyenv = match ctxt absrep_match_err qty_pat qty
             val args_aux = map (double_lookup rtyenv qtyenv) vs
             val args = map (absrep_fun flag ctxt) args_aux
             val map_fun = mk_mapfun ctxt vs rty_pat
             val result = list_comb (map_fun, args)
           in
             (*if forall is_identity args
             then absrep_const flag ctxt s'
             else*) mk_fun_compose flag (absrep_const flag ctxt s', result)
           end
    | (TFree x, TFree x') =>
        if x = x'
        then mk_identity rty
        else raise (error "absrep_fun (frees)")
    | (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
    | _ => raise (error "absrep_fun (default)")

fun absrep_fun_chk flag ctxt (rty, qty) =
  absrep_fun flag ctxt (rty, qty)
  |> Syntax.check_term ctxt




(*** Aggregate Equivalence Relation ***)


(* works very similar to the absrep generation,
   except there is no need for polarities
*)

(* instantiates TVars so that the term is of type ty *)
fun force_typ ctxt trm ty =
let
  val thy = ProofContext.theory_of ctxt
  val trm_ty = fastype_of trm
  val ty_inst = Sign.typ_match thy (trm_ty, ty) Vartab.empty
in
  map_types (Envir.subst_type ty_inst) trm
end

fun is_eq (Const (@{const_name "op ="}, _)) = true
  | is_eq _ = false

fun mk_rel_compose (trm1, trm2) =
  Const (@{const_abbrev "rel_conj"}, dummyT) $ trm1 $ trm2

fun get_relmap ctxt s =
let
  val thy = ProofContext.theory_of ctxt
  val exn = error ("get_relmap (no relation map function found for type " ^ s ^ ")")
  val relmap = #relmap (maps_lookup thy s) handle Quotient_Info.NotFound => raise exn
in
  Const (relmap, dummyT)
end

fun mk_relmap ctxt vs rty =
let
  val vs' = map (mk_Free) vs

  fun mk_relmap_aux rty =
    case rty of
      TVar _ => mk_Free rty
    | Type (_, []) => HOLogic.eq_const rty
    | Type (s, tys) => list_comb (get_relmap ctxt s, map mk_relmap_aux tys)
    | _ => raise (error "mk_relmap (default)")
in
  fold_rev Term.lambda vs' (mk_relmap_aux rty)
end

fun get_equiv_rel ctxt s =
let
  val thy = ProofContext.theory_of ctxt
  val exn = error ("get_quotdata (no quotient found for type " ^ s ^ ")")
in
  #equiv_rel (quotdata_lookup thy s) handle Quotient_Info.NotFound => raise exn
end

fun equiv_match_err ctxt ty_pat ty =
let
  val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
  val ty_str = Syntax.string_of_typ ctxt ty
in
  raise error (space_implode " "
    ["equiv_relation (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
end

(* builds the aggregate equivalence relation
   that will be the argument of Respects
*)
fun equiv_relation ctxt (rty, qty) =
  if rty = qty
  then HOLogic.eq_const rty
  else
    case (rty, qty) of
      (Type (s, tys), Type (s', tys')) =>
       if s = s'
       then
         let
           val args = map (equiv_relation ctxt) (tys ~~ tys')
         in
           list_comb (get_relmap ctxt s, args)
         end
       else
         let
           val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
           val rtyenv = match ctxt equiv_match_err rty_pat rty
           val qtyenv = match ctxt equiv_match_err qty_pat qty
           val args_aux = map (double_lookup rtyenv qtyenv) vs
           val args = map (equiv_relation ctxt) args_aux
           val rel_map = mk_relmap ctxt vs rty_pat
           val result = list_comb (rel_map, args)
           val eqv_rel = get_equiv_rel ctxt s'
           val eqv_rel' = force_typ ctxt eqv_rel ([rty, rty] ---> @{typ bool})
         in
           if forall is_eq args
           then eqv_rel'
           else mk_rel_compose (result, eqv_rel')
         end
      | _ => HOLogic.eq_const rty

fun equiv_relation_chk ctxt (rty, qty) =
  equiv_relation ctxt (rty, qty)
  |> Syntax.check_term ctxt



(*** Regularization ***)

(* Regularizing an rtrm means:

 - Quantifiers over types that need lifting are replaced
   by bounded quantifiers, for example:

      All P  ----> All (Respects R) P

   where the aggregate relation R is given by the rty and qty;

 - Abstractions over types that need lifting are replaced
   by bounded abstractions, for example:

      %x. P  ----> Ball (Respects R) %x. P

 - Equalities over types that need lifting are replaced by
   corresponding equivalence relations, for example:

      A = B  ----> R A B

   or

      A = B  ----> (R ===> R) A B

   for more complicated types of A and B


 The regularize_trm accepts raw theorems in which equalities
 and quantifiers match exactly the ones in the lifted theorem
 but also accepts partially regularized terms.

 This means that the raw theorems can have:
   Ball (Respects R),  Bex (Respects R), Bex1_rel (Respects R), Babs, R
 in the places where:
   All, Ex, Ex1, %, (op =)
 is required the lifted theorem.

*)

val mk_babs = Const (@{const_name Babs}, dummyT)
val mk_ball = Const (@{const_name Ball}, dummyT)
val mk_bex  = Const (@{const_name Bex}, dummyT)
val mk_bex1_rel = Const (@{const_name Bex1_rel}, dummyT)
val mk_resp = Const (@{const_name Respects}, dummyT)

(* - applies f to the subterm of an abstraction,
     otherwise to the given term,
   - used by regularize, therefore abstracted
     variables do not have to be treated specially
*)
fun apply_subt f (trm1, trm2) =
  case (trm1, trm2) of
    (Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
  | _ => f (trm1, trm2)

fun term_mismatch str ctxt t1 t2 =
let
  val t1_str = Syntax.string_of_term ctxt t1
  val t2_str = Syntax.string_of_term ctxt t2
  val t1_ty_str = Syntax.string_of_typ ctxt (fastype_of t1)
  val t2_ty_str = Syntax.string_of_typ ctxt (fastype_of t2)
in
  raise error (cat_lines [str, t1_str ^ "::" ^ t1_ty_str, t2_str ^ "::" ^ t2_ty_str])
end

(* the major type of All and Ex quantifiers *)
fun qnt_typ ty = domain_type (domain_type ty)

(* Checks that two types match, for example:
     rty -> rty   matches   qty -> qty *)
fun matches_typ thy rT qT =
  if rT = qT then true else
  case (rT, qT) of
    (Type (rs, rtys), Type (qs, qtys)) =>
      if rs = qs then
        if length rtys <> length qtys then false else
        forall (fn x => x = true) (map2 (matches_typ thy) rtys qtys)
      else
        (case Quotient_Info.quotdata_lookup_raw thy qs of
          SOME quotinfo => Sign.typ_instance thy (rT, #rtyp quotinfo)
        | NONE => false)
  | _ => false


(* produces a regularized version of rtrm

   - the result might contain dummyTs

   - for regularisation we do not need any
     special treatment of bound variables
*)
fun regularize_trm ctxt (rtrm, qtrm) =
  case (rtrm, qtrm) of
    (Abs (x, ty, t), Abs (_, ty', t')) =>
       let
         val subtrm = Abs(x, ty, regularize_trm ctxt (t, t'))
       in
         if ty = ty' then subtrm
         else mk_babs $ (mk_resp $ equiv_relation ctxt (ty, ty')) $ subtrm
       end
  | (Const (@{const_name "Babs"}, T) $ resrel $ (t as (Abs (_, ty, _))), t' as (Abs (_, ty', _))) =>
       let
         val subtrm = regularize_trm ctxt (t, t')
         val needres = mk_resp $ equiv_relation_chk ctxt (ty, ty')
       in
         if resrel <> needres
         then term_mismatch "regularize (Babs)" ctxt resrel needres
         else mk_babs $ resrel $ subtrm
       end

  | (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
       let
         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
       in
         if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
         else mk_ball $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
       end

  | (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
       let
         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
       in
         if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
         else mk_bex $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
       end

  | (Const (@{const_name "Ex1"}, ty) $ (Abs (_, _,
      (Const (@{const_name "op &"}, _) $ (Const (@{const_name "op :"}, _) $ _ $
        (Const (@{const_name "Respects"}, _) $ resrel)) $ (t $ _)))),
     Const (@{const_name "Ex1"}, ty') $ t') =>
       let
         val t_ = incr_boundvars (~1) t
         val subtrm = apply_subt (regularize_trm ctxt) (t_, t')
         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
       in
         if resrel <> needrel
         then term_mismatch "regularize (Bex1)" ctxt resrel needrel
         else mk_bex1_rel $ resrel $ subtrm
       end

  | (Const (@{const_name "Ex1"}, ty) $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
       let
         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
       in
         if ty = ty' then Const (@{const_name "Ex1"}, ty) $ subtrm
         else mk_bex1_rel $ (equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
       end

  | (Const (@{const_name "Ball"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
     Const (@{const_name "All"}, ty') $ t') =>
       let
         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
       in
         if resrel <> needrel
         then term_mismatch "regularize (Ball)" ctxt resrel needrel
         else mk_ball $ (mk_resp $ resrel) $ subtrm
       end

  | (Const (@{const_name "Bex"}, ty) $ (Const (@{const_name "Respects"}, _) $ resrel) $ t,
     Const (@{const_name "Ex"}, ty') $ t') =>
       let
         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
       in
         if resrel <> needrel
         then term_mismatch "regularize (Bex)" ctxt resrel needrel
         else mk_bex $ (mk_resp $ resrel) $ subtrm
       end

  | (Const (@{const_name "Bex1_rel"}, ty) $ resrel $ t, Const (@{const_name "Ex1"}, ty') $ t') =>
       let
         val subtrm = apply_subt (regularize_trm ctxt) (t, t')
         val needrel = equiv_relation_chk ctxt (qnt_typ ty, qnt_typ ty')
       in
         if resrel <> needrel
         then term_mismatch "regularize (Bex1_res)" ctxt resrel needrel
         else mk_bex1_rel $ resrel $ subtrm
       end

  | (* equalities need to be replaced by appropriate equivalence relations *)
    (Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
         if ty = ty' then rtrm
         else equiv_relation ctxt (domain_type ty, domain_type ty')

  | (* in this case we just check whether the given equivalence relation is correct *)
    (rel, Const (@{const_name "op ="}, ty')) =>
       let
         val rel_ty = fastype_of rel
         val rel' = equiv_relation_chk ctxt (domain_type rel_ty, domain_type ty')
       in
         if rel' aconv rel then rtrm
         else term_mismatch "regularise (relation mismatch)" ctxt rel rel'
       end

  | (_, Const _) =>
       let
         val thy = ProofContext.theory_of ctxt
         fun same_const (Const (s, T)) (Const (s', T')) = (s = s') andalso matches_typ thy T T'
           | same_const _ _ = false
       in
         if same_const rtrm qtrm then rtrm
         else
           let
             val rtrm' = #rconst (qconsts_lookup thy qtrm)
               handle Quotient_Info.NotFound => term_mismatch "regularize(constant notfound)" ctxt rtrm qtrm
           in
             if Pattern.matches thy (rtrm', rtrm)
             then rtrm else term_mismatch "regularize(constant mismatch)" ctxt rtrm qtrm
           end
       end

  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, Abs(v1', ty', s1))),
     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , Abs(v2', _  , s2)))) =>
       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, Abs (v1', ty', regularize_trm ctxt (s1, s2)))

  | (((t1 as Const (@{const_name "split"}, _)) $ Abs (v1, ty, s1)),
     ((t2 as Const (@{const_name "split"}, _)) $ Abs (v2, _ , s2))) =>
       regularize_trm ctxt (t1, t2) $ Abs (v1, ty, regularize_trm ctxt (s1, s2))

  | (t1 $ t2, t1' $ t2') =>
       regularize_trm ctxt (t1, t1') $ regularize_trm ctxt (t2, t2')

  | (Bound i, Bound i') =>
       if i = i' then rtrm
       else raise (error "regularize (bounds mismatch)")

  | _ =>
       let
         val rtrm_str = Syntax.string_of_term ctxt rtrm
         val qtrm_str = Syntax.string_of_term ctxt qtrm
       in
         raise (error ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
       end

fun regularize_trm_chk ctxt (rtrm, qtrm) =
  regularize_trm ctxt (rtrm, qtrm)
  |> Syntax.check_term ctxt



(*** Rep/Abs Injection ***)

(*
Injection of Rep/Abs means:

  For abstractions:

  * If the type of the abstraction needs lifting, then we add Rep/Abs
    around the abstraction; otherwise we leave it unchanged.

  For applications:

  * If the application involves a bounded quantifier, we recurse on
    the second argument. If the application is a bounded abstraction,
    we always put an Rep/Abs around it (since bounded abstractions
    are assumed to always need lifting). Otherwise we recurse on both
    arguments.

  For constants:

  * If the constant is (op =), we leave it always unchanged.
    Otherwise the type of the constant needs lifting, we put
    and Rep/Abs around it.

  For free variables:

  * We put a Rep/Abs around it if the type needs lifting.

  Vars case cannot occur.
*)

fun mk_repabs ctxt (T, T') trm =
  absrep_fun RepF ctxt (T, T') $ (absrep_fun AbsF ctxt (T, T') $ trm)

fun inj_repabs_err ctxt msg rtrm qtrm =
let
  val rtrm_str = Syntax.string_of_term ctxt rtrm
  val qtrm_str = Syntax.string_of_term ctxt qtrm
in
  raise error (space_implode " " [msg, quote rtrm_str, "and", quote qtrm_str])
end


(* bound variables need to be treated properly,
   as the type of subterms needs to be calculated   *)
fun inj_repabs_trm ctxt (rtrm, qtrm) =
 case (rtrm, qtrm) of
    (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
       Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))

  | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
       Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))

  | (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
      let
        val rty = fastype_of rtrm
        val qty = fastype_of qtrm
      in
        mk_repabs ctxt (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm ctxt (t, t')))
      end

  | (Abs (x, T, t), Abs (x', T', t')) =>
      let
        val rty = fastype_of rtrm
        val qty = fastype_of qtrm
        val (y, s) = Term.dest_abs (x, T, t)
        val (_, s') = Term.dest_abs (x', T', t')
        val yvar = Free (y, T)
        val result = Term.lambda_name (y, yvar) (inj_repabs_trm ctxt (s, s'))
      in
        if rty = qty then result
        else mk_repabs ctxt (rty, qty) result
      end

  | (t $ s, t' $ s') =>
       (inj_repabs_trm ctxt (t, t')) $ (inj_repabs_trm ctxt (s, s'))

  | (Free (_, T), Free (_, T')) =>
        if T = T' then rtrm
        else mk_repabs ctxt (T, T') rtrm

  | (_, Const (@{const_name "op ="}, _)) => rtrm

  | (_, Const (_, T')) =>
      let
        val rty = fastype_of rtrm
      in
        if rty = T' then rtrm
        else mk_repabs ctxt (rty, T') rtrm
      end

  | _ => inj_repabs_err ctxt "injection (default):" rtrm qtrm

fun inj_repabs_trm_chk ctxt (rtrm, qtrm) =
  inj_repabs_trm ctxt (rtrm, qtrm)
  |> Syntax.check_term ctxt



(*** Wrapper for automatically transforming an rthm into a qthm ***)

(* subst_tys takes a list of (rty, qty) substitution pairs
   and replaces all occurences of rty in the given type
   by appropriate qty, with substitution *)
fun subst_ty thy ty (rty, qty) r =
  if r <> NONE then r else
  case try (Sign.typ_match thy (rty, ty)) Vartab.empty of
    SOME inst => SOME (Envir.subst_type inst qty)
  | NONE => NONE
fun subst_tys thy substs ty =
  case fold (subst_ty thy ty) substs NONE of
    SOME ty => ty
  | NONE =>
      (case ty of
        Type (s, tys) => Type (s, map (subst_tys thy substs) tys)
      | x => x)

(* subst_trms takes a list of (rtrm, qtrm) substitution pairs
   and if the given term matches any of the raw terms it
   returns the appropriate qtrm instantiated. If none of
   them matched it returns NONE. *)
fun subst_trm thy t (rtrm, qtrm) s =
  if s <> NONE then s else
    case try (Pattern.match thy (rtrm, t)) (Vartab.empty, Vartab.empty) of
      SOME inst => SOME (Envir.subst_term inst qtrm)
    | NONE => NONE;
fun subst_trms thy substs t = fold (subst_trm thy t) substs NONE

(* prepares type and term substitution pairs to be used by above
   functions that let replace all raw constructs by appropriate
   lifted counterparts. *)
fun get_ty_trm_substs ctxt =
let
  val thy = ProofContext.theory_of ctxt
  val quot_infos  = Quotient_Info.quotdata_dest ctxt
  val const_infos = Quotient_Info.qconsts_dest ctxt
  val ty_substs = map (fn ri => (#rtyp ri, #qtyp ri)) quot_infos
  val const_substs = map (fn ci => (#rconst ci, #qconst ci)) const_infos
  fun rel_eq rel = HOLogic.eq_const (subst_tys thy ty_substs (domain_type (fastype_of rel)))
  val rel_substs = map (fn ri => (#equiv_rel ri, rel_eq (#equiv_rel ri))) quot_infos
in
  (ty_substs, const_substs @ rel_substs)
end

fun quotient_lift_const (b, t) ctxt =
let
  val thy = ProofContext.theory_of ctxt
  val (ty_substs, _) = get_ty_trm_substs ctxt;
  val (_, ty) = dest_Const t;
  val nty = subst_tys thy ty_substs ty;
in
  Free(b, nty)
end

(*
Takes a term and

* replaces raw constants by the quotient constants

* replaces equivalence relations by equalities

* replaces raw types by the quotient types

*)

fun quotient_lift_all ctxt t =
let
  val thy = ProofContext.theory_of ctxt
  val (ty_substs, substs) = get_ty_trm_substs ctxt
  fun lift_aux t =
    case subst_trms thy substs t of
      SOME x => x
    | NONE =>
      (case t of
        a $ b => lift_aux a $ lift_aux b
      | Abs(a, ty, s) =>
          let
            val (y, s') = Term.dest_abs (a, ty, s)
            val nty = subst_tys thy ty_substs ty
          in
            Abs(y, nty, abstract_over (Free (y, nty), lift_aux s'))
          end
      | Free(n, ty) => Free(n, subst_tys thy ty_substs ty)
      | Var(n, ty) => Var(n, subst_tys thy ty_substs ty)
      | Bound i => Bound i
      | Const(s, ty) => Const(s, subst_tys thy ty_substs ty))
in
  lift_aux t
end

end; (* structure *)