theory NewAlpha
imports "Abs" "Perm"
begin
ML {*
fun mk_prod_fv (t1, t2) =
let
val ty1 = fastype_of t1
val ty2 = fastype_of t2
val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
in
Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
end
*}
ML {*
fun mk_prod_alpha (t1, t2) =
let
val ty1 = fastype_of t1
val ty2 = fastype_of t2
val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
val resT = [prodT, prodT] ---> @{typ "bool"}
in
Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
end
*}
ML {*
fun mk_binders lthy bmode args bodies =
let
fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
| bind_set _ args (SOME bn, i) = bn $ (nth args i)
fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
| bind_lst _ args (SOME bn, i) = bn $ (nth args i)
val (connect_fn, bind_fn) =
case bmode of
Lst => (mk_append, bind_lst)
| Set => (mk_union, bind_set)
| Res => (mk_union, bind_set)
in
foldl1 connect_fn (map (bind_fn lthy args) bodies)
end
*}
ML {*
fun mk_alpha_prem bmode fv alpha args args' binders binders' =
let
val (alpha_name, binder_ty) =
case bmode of
Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
| Set => (@{const_name "alpha_gen"}, @{typ "atom set"})
| Res => (@{const_name "alpha_res"}, @{typ "atom set"})
val ty = fastype_of args
val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
val alpha_ty = [ty, ty] ---> @{typ "bool"}
val fv_ty = ty --> @{typ "atom set"}
in
HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool})
$ HOLogic.mk_prod (binders, args) $ alpha $ fv $ (Bound 0) $ HOLogic.mk_prod (binders', args'))
end
*}
ML {*
fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder =
case binder of
(NONE, i) => []
| (SOME bn, i) =>
if member (op=) bodies i
then []
else [the (AList.lookup (op=) alpha_bn_map bn) $ (nth args i) $ (nth args' i)]
*}
ML {*
fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
let
fun mk_frees i =
let
val arg = nth args i
val arg' = nth args' i
val ty = fastype_of arg
in
if nth is_rec i
then fst (the (AList.lookup (op=) alpha_map ty)) $ arg $ arg'
else HOLogic.mk_eq (arg, arg')
end
fun mk_alpha_fv i =
let
val ty = fastype_of (nth args i)
in
case AList.lookup (op=) alpha_map ty of
NONE => (HOLogic.eq_const ty, supp_const ty)
| SOME (alpha, fv) => (alpha, fv)
end
in
case bclause of
BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies
| BC (bmode, binders, bodies) =>
let
val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
val comp_fv = foldl1 mk_prod_fv fvs
val comp_alpha = foldl1 mk_prod_alpha alphas
val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
val comp_binders = mk_binders lthy bmode args binders
val comp_binders' = mk_binders lthy bmode args' binders
val alpha_prem =
mk_alpha_prem bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
in
map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
end
end
*}
ML {*
fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val arg_names' = Name.variant_list arg_names arg_names
val args = map Free (arg_names ~~ arg_tys)
val args' = map Free (arg_names' ~~ arg_tys)
val alpha = fst (the (AList.lookup (op=) alpha_map ty))
val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
in
Library.foldr Logic.mk_implies (flat prems, concl)
end
*}
ML {*
fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
let
fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i =
let
val arg = nth args i
val arg' = nth args' i
val ty = fastype_of arg
in
case AList.lookup (op=) bn_args i of
NONE => (case (AList.lookup (op=) alpha_map ty) of
NONE => [HOLogic.mk_eq (arg, arg')]
| SOME (alpha, _) => [alpha $ arg $ arg'])
| SOME (NONE) => []
| SOME (SOME bn) => [the (AList.lookup (op=) alpha_bn_map bn) $ arg $ arg']
end
in
case bclause of
BC (_, [], bodies) =>
map HOLogic.mk_Trueprop
(flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies))
| _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
end
*}
ML {*
fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val arg_names' = Name.variant_list arg_names arg_names
val args = map Free (arg_names ~~ arg_tys)
val args' = map Free (arg_names' ~~ arg_tys)
val alpha_bn = the (AList.lookup (op=) alpha_bn_map bn_trm)
val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
in
Library.foldr Logic.mk_implies (flat prems, concl)
end
*}
ML {*
fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) =
let
val nth_constrs_info = nth constrs_info bn_n
val nth_bclausess = nth bclausesss bn_n
in
map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end
*}
ML {*
fun define_raw_alpha descr sorts bn_info bclausesss fvs lthy =
let
val alpha_names = prefix_dt_names descr sorts "alpha_"
val alpha_arg_tys = all_dtyps descr sorts
val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) alpha_arg_tys
val alpha_frees = map Free (alpha_names ~~ alpha_tys)
val alpha_map = alpha_arg_tys ~~ (alpha_frees ~~ fvs)
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val alpha_bn_names = map (prefix "alpha_") bn_names
val alpha_bn_arg_tys = map (fn i => nth_dtyp descr sorts i) bn_tys
val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
val alpha_bn_map = bns ~~ alpha_bn_frees
val constrs_info = all_dtyp_constrs_types descr sorts
val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) constrs_info bclausesss
val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss) bn_info
val all_alpha_names = map2 (fn s => fn ty => ((Binding.name s, ty), NoSyn))
(alpha_names @ alpha_bn_names) (alpha_tys @ alpha_bn_tys)
val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
val (alphas, lthy') = Inductive.add_inductive_i
{quiet_mode = true, verbose = false, alt_name = Binding.empty,
coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
all_alpha_names [] all_alpha_intros [] lthy
val alpha_trms_loc = #preds alphas;
val alpha_induct_loc = #raw_induct alphas;
val alpha_intros_loc = #intrs alphas;
val alpha_cases_loc = #elims alphas;
val phi = ProofContext.export_morphism lthy' lthy;
val alpha_trms = map (Morphism.term phi) alpha_trms_loc;
val alpha_induct = Morphism.thm phi alpha_induct_loc;
val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
val alpha_cases = map (Morphism.thm phi) alpha_cases_loc
in
(alpha_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
end
*}
end