theory IntEx
imports QuotMain
begin
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient my_int = "nat \<times> nat" / intrel
apply(unfold EQUIV_def)
apply(auto simp add: mem_def expand_fun_eq)
done
thm my_int_equiv
print_theorems
print_quotients
quotient_def
ZERO::"my_int"
where
"ZERO \<equiv> (0::nat, 0::nat)"
ML {* print_qconstinfo @{context} *}
term ZERO
thm ZERO_def
ML {* prop_of @{thm ZERO_def} *}
ML {* separate *}
quotient_def
ONE::"my_int"
where
"ONE \<equiv> (1::nat, 0::nat)"
ML {* print_qconstinfo @{context} *}
term ONE
thm ONE_def
fun
my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_plus (x, y) (u, v) = (x + u, y + v)"
quotient_def
PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"PLUS \<equiv> my_plus"
term my_plus
term PLUS
thm PLUS_def
fun
my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_neg (x, y) = (y, x)"
quotient_def
NEG::"my_int \<Rightarrow> my_int"
where
"NEG \<equiv> my_neg"
term NEG
thm NEG_def
definition
MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MINUS z w = PLUS z (NEG w)"
fun
my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
quotient_def
MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MULT \<equiv> my_mult"
term MULT
thm MULT_def
(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"my_le (x, y) (u, v) = (x+v \<le> u+y)"
quotient_def
LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LE \<equiv> my_le"
term LE
thm LE_def
definition
LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LESS z w = (LE z w \<and> z \<noteq> w)"
term LESS
thm LESS_def
definition
ABS :: "my_int \<Rightarrow> my_int"
where
"ABS i = (if (LESS i ZERO) then (NEG i) else i)"
definition
SIGN :: "my_int \<Rightarrow> my_int"
where
"SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"
ML {* print_qconstinfo @{context} *}
lemma plus_sym_pre:
shows "my_plus a b \<approx> my_plus b a"
apply(cases a)
apply(cases b)
apply(auto)
done
lemma ho_plus_rsp:
"(intrel ===> intrel ===> intrel) my_plus my_plus"
by (simp)
ML {* val qty = @{typ "my_int"} *}
ML {* val ty_name = "my_int" *}
ML {* val rsp_thms = @{thms ho_plus_rsp} @ @{thms ho_all_prs ho_ex_prs} *}
ML {* val defs = @{thms PLUS_def} *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *}
ML {* val consts = lookup_quot_consts defs *}
ML {*
fun lift_tac_fset lthy t =
lift_tac lthy t rel_eqv rel_refl rty quot trans2 rsp_thms reps_same absrep defs
*}
lemma "PLUS a b = PLUS b a"
by (tactic {* lift_tac_fset @{context} @{thm plus_sym_pre} 1 *})
lemma plus_assoc_pre:
shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"
apply (cases i)
apply (cases j)
apply (cases k)
apply (simp)
done
lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
by (tactic {* lift_tac_fset @{context} @{thm plus_assoc_pre} 1 *})
lemma ho_tst: "foldl my_plus x [] = x"
apply simp
done
lemma "foldl PLUS x [] = x"
apply (tactic {* lift_tac_fset @{context} @{thm ho_tst} 1 *})
sorry
(*
FIXME: All below is your construction code; mostly commented out as it
does not work.
*)
ML {*
regularize_trm @{context}
@{term "\<forall>i j k. my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"}
@{term "\<forall>i j k. PLUS (PLUS i j) k = PLUS i (PLUS j k)"}
|> Syntax.string_of_term @{context}
|> writeln
*}
lemma "PLUS (PLUS i j) k = PLUS i (PLUS j k)"
apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] rel_refl 1 *})
apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *})
oops
(*
ML {*
fun r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms =
(REPEAT1 o FIRST1)
[(K (print_tac "start")) THEN' (K no_tac),
DT ctxt "1" (rtac trans_thm),
DT ctxt "2" (LAMBDA_RES_TAC ctxt),
DT ctxt "3" (ball_rsp_tac ctxt),
DT ctxt "4" (bex_rsp_tac ctxt),
DT ctxt "5" (FIRST' (map rtac rsp_thms)),
DT ctxt "6" (instantiate_tac @{thm REP_ABS_RSP(1)} ctxt THEN' (RANGE [quotient_tac quot_thm])),
DT ctxt "7" (rtac refl),
DT ctxt "8" (APPLY_RSP_TAC rty ctxt THEN' (RANGE [quotient_tac quot_thm, quotient_tac quot_thm])),
DT ctxt "9" (Cong_Tac.cong_tac @{thm cong}),
DT ctxt "A" (rtac @{thm ext}),
DT ctxt "B" (rtac reflex_thm),
DT ctxt "C" (atac),
DT ctxt "D" (SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))),
DT ctxt "E" (WEAK_LAMBDA_RES_TAC ctxt),
DT ctxt "F" (CHANGED' (asm_full_simp_tac (HOL_ss addsimps @{thms FUN_REL_EQ})))]
*}
ML {*
mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm)
|> Syntax.check_term @{context}
*}
ML {* val my_goal = cterm_of @{theory} (mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm)) *}
ML {* val yr_goal = cterm_of @{theory} (build_repabs_goal @{context} (@{thm testtest} OF [arthm]) consts rty qty) *}
prove {* mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm) *}
apply(tactic {* ObjectLogic.full_atomize_tac 1 *})
apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *})
done
ML {*
inj_REPABS @{context} (reg_atrm, aqtrm)
|> Syntax.string_of_term @{context}
|> writeln
*}
*)