Minor paper fixes.
theory Nominal2_FSet
imports "../Nominal-General/Nominal2_Supp"
FSet
begin
lemma permute_rsp_fset[quot_respect]:
"(op = ===> list_eq ===> list_eq) permute permute"
apply (simp add: eqvts[symmetric])
apply clarify
apply (subst permute_minus_cancel(1)[symmetric, of "xb"])
apply (subst mem_eqvt[symmetric])
apply (subst (2) permute_minus_cancel(1)[symmetric, of "xb"])
apply (subst mem_eqvt[symmetric])
apply (erule_tac x="- x \<bullet> xb" in allE)
apply simp
done
instantiation FSet.fset :: (pt) pt
begin
quotient_definition
"permute_fset :: perm \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
"permute :: perm \<Rightarrow> 'a list \<Rightarrow> 'a list"
instance
proof
fix x :: "'a fset" and p q :: "perm"
show "0 \<bullet> x = x"
by (lifting permute_zero [where 'a="'a list"])
show "(p + q) \<bullet> x = p \<bullet> q \<bullet> x"
by (lifting permute_plus [where 'a="'a list"])
qed
end
lemma permute_fset[eqvt]:
"(p \<bullet> {||}) = ({||} :: 'a::pt fset)"
"p \<bullet> finsert (x :: 'a :: pt) xs = finsert (p \<bullet> x) (p \<bullet> xs)"
by (lifting permute_list.simps)
lemma fmap_eqvt[eqvt]:
shows "p \<bullet> (fmap f l) = fmap (p \<bullet> f) (p \<bullet> l)"
by (lifting map_eqvt)
lemma fset_to_set_eqvt[eqvt]:
shows "p \<bullet> (fset_to_set x) = fset_to_set (p \<bullet> x)"
by (lifting set_eqvt)
lemma fin_fset_to_set:
shows "finite (fset_to_set x)"
by (induct x) (simp_all)
lemma supp_fset_to_set:
"supp (fset_to_set x) = supp x"
apply (simp add: supp_def)
apply (simp add: eqvts)
apply (simp add: fset_cong)
done
lemma atom_fmap_cong:
shows "(fmap atom x = fmap atom y) = (x = y)"
apply(rule inj_fmap_eq_iff)
apply(simp add: inj_on_def)
done
lemma supp_fmap_atom:
shows "supp (fmap atom x) = supp x"
unfolding supp_def
apply (perm_simp)
apply (simp add: atom_fmap_cong)
done
lemma supp_atom_insert:
"finite (xs :: atom set) \<Longrightarrow> supp (insert x xs) = supp x \<union> supp xs"
apply (simp add: supp_finite_atom_set)
apply (simp add: supp_atom)
done
lemma atom_image_cong:
shows "(atom ` X = atom ` Y) = (X = Y)"
apply(rule inj_image_eq_iff)
apply(simp add: inj_on_def)
done
lemma atom_eqvt_raw:
fixes p::"perm"
shows "(p \<bullet> atom) = atom"
apply(perm_simp)
apply(simp)
done
lemma supp_finite_at_set:
fixes S::"('a :: at) set"
assumes a: "finite S"
shows "supp S = atom ` S"
apply(rule finite_supp_unique)
apply(simp add: supports_def)
apply (rule finite_induct[OF a])
apply (simp add: eqvts)
apply (simp)
apply clarify
apply (subst atom_image_cong[symmetric])
apply (subst atom_eqvt_raw[symmetric])
apply (subst eqvts[symmetric])
apply (rule swap_set_not_in)
apply simp_all
apply(rule finite_imageI)
apply(rule a)
apply (subst atom_image_cong[symmetric])
apply (subst atom_eqvt_raw[symmetric])
apply (subst eqvts[symmetric])
apply (rule swap_set_in)
apply simp_all
done
lemma supp_at_insert:
"finite (xs :: ('a :: at) set) \<Longrightarrow> supp (insert x xs) = supp x \<union> supp xs"
apply (simp add: supp_finite_at_set)
apply (simp add: supp_at_base)
done
lemma supp_atom_finsert:
"supp (finsert (x :: atom) S) = supp x \<union> supp S"
apply (subst supp_fset_to_set[symmetric])
apply (simp add: supp_finite_atom_set)
apply (simp add: supp_atom_insert[OF fin_fset_to_set])
apply (simp add: supp_fset_to_set)
done
lemma supp_at_finsert:
"supp (finsert (x :: 'a :: at) S) = supp x \<union> supp S"
apply (subst supp_fset_to_set[symmetric])
apply (simp add: supp_finite_atom_set)
apply (simp add: supp_at_insert[OF fin_fset_to_set])
apply (simp add: supp_fset_to_set)
done
lemma supp_fempty:
"supp {||} = {}"
by (simp add: supp_def eqvts)
instance fset :: (at) fs
apply (default)
apply (induct_tac x rule: fset_induct)
apply (simp add: supp_fempty)
apply (simp add: supp_at_finsert)
apply (simp add: supp_at_base)
done
lemma supp_at_fset:
"supp (fset :: 'a :: at fset) = fset_to_set (fmap atom fset)"
apply (induct fset)
apply (simp add: supp_fempty)
apply (simp add: supp_at_finsert)
apply (simp add: supp_at_base)
done
end