Nominal/nominal_dt_alpha.ML
author Christian Urban <urbanc@in.tum.de>
Thu, 24 Jun 2010 00:41:41 +0100
changeset 2334 0d10196364aa
parent 2322 24de7e548094
child 2375 e163fd99de44
permissions -rw-r--r--
added comment about partial equivalence relations

(*  Title:      nominal_dt_alpha.ML
    Author:     Cezary Kaliszyk
    Author:     Christian Urban

  Definitions and proofs for the alpha-relations.
*)

signature NOMINAL_DT_ALPHA =
sig
  val define_raw_alpha: Datatype_Aux.descr -> (string * sort) list -> bn_info ->
    bclause list list list -> term list -> Proof.context -> 
    term list * term list * thm list * thm list * thm * local_theory

  val mk_alpha_distincts: Proof.context -> thm list -> thm list list -> 
    term list -> term list -> bn_info -> thm list * thm list

  val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list -> thm list -> thm list

  val raw_prove_refl: term list -> term list -> thm list -> thm -> Proof.context -> thm list
  val raw_prove_sym: term list -> thm list -> thm -> Proof.context -> thm list
  val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> Proof.context -> thm list
  val raw_prove_equivp: term list -> thm list -> thm list -> thm list -> Proof.context -> thm list
  val raw_prove_bn_imp: term list -> term list -> thm list -> thm -> Proof.context -> thm list
end

structure Nominal_Dt_Alpha: NOMINAL_DT_ALPHA =
struct

fun lookup xs x = the (AList.lookup (op=) xs x)
fun group xs = AList.group (op=) xs

(** definition of the inductive rules for alpha and alpha_bn **)

(* construct the compound terms for prod_fv and prod_alpha *)
fun mk_prod_fv (t1, t2) =
let
  val ty1 = fastype_of t1
  val ty2 = fastype_of t2 
  val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"}
in
  Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2
end

fun mk_prod_alpha (t1, t2) =
let
  val ty1 = fastype_of t1
  val ty2 = fastype_of t2 
  val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2)
  val resT = [prodT, prodT] ---> @{typ "bool"}
in
  Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2
end

(* generates the compound binder terms *)
fun mk_binders lthy bmode args bodies = 
let  
  fun bind_set lthy args (NONE, i) = setify lthy (nth args i)
    | bind_set _ args (SOME bn, i) = bn $ (nth args i)
  fun bind_lst lthy args (NONE, i) = listify lthy (nth args i)
    | bind_lst _ args (SOME bn, i) = bn $ (nth args i)

  val (combine_fn, bind_fn) =
    case bmode of
      Lst => (mk_append, bind_lst) 
    | Set => (mk_union,  bind_set)
    | Res => (mk_union,  bind_set)
in
  foldl1 combine_fn (map (bind_fn lthy args) bodies)
end

(* produces the term for an alpha with abstraction *)
fun mk_alpha_term bmode fv alpha args args' binders binders' =
let
  val (alpha_name, binder_ty) = 
    case bmode of
      Lst => (@{const_name "alpha_lst"}, @{typ "atom list"})
    | Set => (@{const_name "alpha_gen"}, @{typ "atom set"})
    | Res => (@{const_name "alpha_res"}, @{typ "atom set"})
  val ty = fastype_of args
  val pair_ty = HOLogic.mk_prodT (binder_ty, ty)
  val alpha_ty = [ty, ty] ---> @{typ "bool"}
  val fv_ty = ty --> @{typ "atom set"}
  val pair_lhs = HOLogic.mk_prod (binders, args)
  val pair_rhs = HOLogic.mk_prod (binders', args')
in
  HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm},
    Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) 
      $ pair_lhs $ alpha $ fv $ (Bound 0) $ pair_rhs)
end

(* for non-recursive binders we have to produce alpha_bn premises *)
fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder = 
  case binder of
    (NONE, _) => []
  | (SOME bn, i) =>
     if member (op=) bodies i then [] 
     else [lookup alpha_bn_map bn $ nth args i $ nth args' i]

(* generat the premises for an alpha rule; mk_frees is used
   if no binders are present *)
fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause =
let
  fun mk_frees i =
    let
      val arg = nth args i
      val arg' = nth args' i
      val ty = fastype_of arg
    in
      if nth is_rec i
      then fst (lookup alpha_map ty) $ arg $ arg'
      else HOLogic.mk_eq (arg, arg')
    end

  fun mk_alpha_fv i = 
    let
      val ty = fastype_of (nth args i)
    in
      case AList.lookup (op=) alpha_map ty of
        NONE => (HOLogic.eq_const ty, supp_const ty) 
      | SOME (alpha, fv) => (alpha, fv) 
    end  
in
  case bclause of
    BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies 
  | BC (bmode, binders, bodies) => 
    let
      val (alphas, fvs) = split_list (map mk_alpha_fv bodies)
      val comp_fv = foldl1 mk_prod_fv fvs
      val comp_alpha = foldl1 mk_prod_alpha alphas
      val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies)
      val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies)
      val comp_binders = mk_binders lthy bmode args binders
      val comp_binders' = mk_binders lthy bmode args' binders
      val alpha_prem = 
        mk_alpha_term bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders'
      val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders)
    in
      map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems)
    end
end

(* produces the introduction rule for an alpha rule *)
fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses = 
let
  val arg_names = Datatype_Prop.make_tnames arg_tys
  val arg_names' = Name.variant_list arg_names arg_names
  val args = map Free (arg_names ~~ arg_tys)
  val args' = map Free (arg_names' ~~ arg_tys)
  val alpha = fst (lookup alpha_map ty)
  val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args'))
  val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses
in
  Library.foldr Logic.mk_implies (flat prems, concl)
end

(* produces the premise of an alpha-bn rule; we only need to
   treat the case special where the binding clause is empty;
   
   - if the body is not included in the bn_info, then we either
     produce an equation or an alpha-premise

   - if the body is included in the bn_info, then we create
     either a recursive call to alpha-bn, or no premise  *)
fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause =
let
  fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i = 
  let
    val arg = nth args i
    val arg' = nth args' i
    val ty = fastype_of arg
  in
    case AList.lookup (op=) bn_args i of
      NONE => (case (AList.lookup (op=) alpha_map ty) of
                 NONE =>  [HOLogic.mk_eq (arg, arg')]
               | SOME (alpha, _) => [alpha $ arg $ arg'])
    | SOME (NONE) => []
    | SOME (SOME bn) => [lookup alpha_bn_map bn $ arg $ arg']
  end  
in
  case bclause of
    BC (_, [], bodies) => 
      map HOLogic.mk_Trueprop 
        (flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies))
  | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause
end

fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses =
let
  val arg_names = Datatype_Prop.make_tnames arg_tys
  val arg_names' = Name.variant_list arg_names arg_names
  val args = map Free (arg_names ~~ arg_tys)
  val args' = map Free (arg_names' ~~ arg_tys)
  val alpha_bn = lookup alpha_bn_map bn_trm
  val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args'))
  val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses
in
  Library.foldr Logic.mk_implies (flat prems, concl)
end

fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = 
let
  val nth_constrs_info = nth constrs_info bn_n
  val nth_bclausess = nth bclausesss bn_n
in
  map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end

fun define_raw_alpha descr sorts bn_info bclausesss fvs lthy =
let
  val alpha_names = prefix_dt_names descr sorts "alpha_"
  val alpha_arg_tys = all_dtyps descr sorts
  val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) alpha_arg_tys
  val alpha_frees = map Free (alpha_names ~~ alpha_tys)
  val alpha_map = alpha_arg_tys ~~ (alpha_frees ~~ fvs)

  val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
  val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
  val alpha_bn_names = map (prefix "alpha_") bn_names
  val alpha_bn_arg_tys = map (fn i => nth_dtyp descr sorts i) bn_tys
  val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys
  val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys)
  val alpha_bn_map = bns ~~ alpha_bn_frees

  val constrs_info = all_dtyp_constrs_types descr sorts

  val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) constrs_info bclausesss 
  val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss) bn_info

  val all_alpha_names = map (fn (a, ty) => ((Binding.name a, ty), NoSyn))
    (alpha_names @ alpha_bn_names ~~ alpha_tys @ alpha_bn_tys)
  val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros)
  
  val (alphas, lthy') = Inductive.add_inductive_i
     {quiet_mode = true, verbose = false, alt_name = Binding.empty,
      coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
     all_alpha_names [] all_alpha_intros [] lthy

  val all_alpha_trms_loc = #preds alphas;
  val alpha_induct_loc = #raw_induct alphas;
  val alpha_intros_loc = #intrs alphas;
  val alpha_cases_loc = #elims alphas;
  val phi = ProofContext.export_morphism lthy' lthy;

  val all_alpha_trms = map (Morphism.term phi) all_alpha_trms_loc;
  val alpha_induct = Morphism.thm phi alpha_induct_loc;
  val alpha_intros = map (Morphism.thm phi) alpha_intros_loc
  val alpha_cases = map (Morphism.thm phi) alpha_cases_loc

  val (alpha_trms, alpha_bn_trms) = chop (length fvs) all_alpha_trms
in
  (alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy')
end



(** produces the distinctness theorems **)

(* transforms the distinctness theorems of the constructors 
   to "not-alphas" of the constructors *)
fun mk_alpha_distinct_goal alpha neq =
let
  val (lhs, rhs) = 
    neq
    |> HOLogic.dest_Trueprop
    |> HOLogic.dest_not
    |> HOLogic.dest_eq
in
  alpha $ lhs $ rhs
  |> HOLogic.mk_not
  |> HOLogic.mk_Trueprop
end

fun distinct_tac cases distinct_thms =
  rtac notI THEN' eresolve_tac cases 
  THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct_thms)

fun mk_alpha_distinct ctxt cases_thms (distinct_thm, alpha) =
let
  val ((_, thms), ctxt') = Variable.import false distinct_thm ctxt
  val goals = map (mk_alpha_distinct_goal alpha o prop_of) thms
  val nrels = map (fn t => Goal.prove ctxt' [] [] t (K (distinct_tac cases_thms distinct_thm 1))) goals
in
  Variable.export ctxt' ctxt nrels
end

fun mk_alpha_distincts ctxt alpha_cases constrs_distinct_thms alpha_trms alpha_bn_trms bn_infos =
let
  val alpha_distincts = 
    map (mk_alpha_distinct ctxt alpha_cases) (constrs_distinct_thms ~~ alpha_trms)
  val distinc_thms = map 
  val alpha_bn_distincts_aux = map (fn (_, i, _) => nth constrs_distinct_thms i) bn_infos
  val alpha_bn_distincts =  
    map (mk_alpha_distinct ctxt alpha_cases) (alpha_bn_distincts_aux ~~ alpha_bn_trms)
in
  (flat alpha_distincts, flat alpha_bn_distincts)
end



(** produces the alpha_eq_iff simplification rules **)

(* in case a theorem is of the form (C.. = C..), it will be
   rewritten to ((C.. = C..) = True) *)
fun mk_simp_rule thm =
  case (prop_of thm) of
    @{term "Trueprop"} $ (Const (@{const_name "op ="}, _) $ _ $ _) => @{thm eqTrueI} OF [thm]
  | _ => thm

fun alpha_eq_iff_tac dist_inj intros elims =
  SOLVED' (asm_full_simp_tac (HOL_ss addsimps intros)) ORELSE'
  (rtac @{thm iffI} THEN' 
    RANGE [eresolve_tac elims THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps dist_inj),
           asm_full_simp_tac (HOL_ss addsimps intros)])

fun mk_alpha_eq_iff_goal thm =
  let
    val prop = prop_of thm;
    val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop);
    val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop);
    fun list_conj l = foldr1 HOLogic.mk_conj l;
  in
    if hyps = [] then HOLogic.mk_Trueprop concl
    else HOLogic.mk_Trueprop (HOLogic.mk_eq (concl, list_conj hyps))
  end;

fun mk_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
let
  val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
  val goals = map mk_alpha_eq_iff_goal thms_imp;
  val tac = alpha_eq_iff_tac (distinct_thms @ inject_thms) alpha_intros alpha_elims 1;
  val thms = map (fn goal => Goal.prove ctxt' [] [] goal (K tac)) goals;
in
  Variable.export ctxt' ctxt thms
  |> map mk_simp_rule
end



(** reflexivity proof for the alphas **)

val exi_zero = @{lemma "P (0::perm) ==> (? x. P x)" by auto}

fun cases_tac intros =
let
  val prod_simps = @{thms split_conv prod_alpha_def prod_rel.simps}

  val unbound_tac = REPEAT o (etac @{thm conjE}) THEN' atac  

  val bound_tac = 
    EVERY' [ rtac exi_zero, 
             resolve_tac @{thms alpha_gen_refl}, 
             asm_full_simp_tac (HOL_ss addsimps prod_simps) ]
in
  REPEAT o FIRST' [rtac @{thm conjI}, 
    resolve_tac intros THEN_ALL_NEW FIRST' [rtac @{thm refl}, unbound_tac, bound_tac]]
end

fun raw_prove_refl alpha_trms alpha_bns alpha_intros raw_dt_induct ctxt =
let
  val arg_tys = 
    alpha_trms
    |> map fastype_of
    |> map domain_type
  val arg_bn_tys = 
    alpha_bns
    |> map fastype_of
    |> map domain_type
  val arg_names = Datatype_Prop.make_tnames arg_tys
  val arg_bn_names = map (lookup (arg_tys ~~ arg_names)) arg_bn_tys
  val args = map Free (arg_names ~~ arg_tys)
  val arg_bns = map Free (arg_bn_names ~~ arg_bn_tys)
  val goal = 
    group ((arg_bns ~~ alpha_bns) @ (args ~~ alpha_trms))
    |> map (fn (ar, cnsts) => map (fn c => c $ ar $ ar) cnsts) 
    |> map (foldr1 HOLogic.mk_conj)
    |> foldr1 HOLogic.mk_conj
    |> HOLogic.mk_Trueprop
in
  Goal.prove ctxt arg_names [] goal
    (fn {context, ...} => 
       HEADGOAL (DETERM o (rtac raw_dt_induct) THEN_ALL_NEW cases_tac alpha_intros)) 
  |> Datatype_Aux.split_conj_thm 
  |> map Datatype_Aux.split_conj_thm 
  |> flat
end



(** symmetry proof for the alphas **)

val exi_neg = @{lemma "(EX (p::perm). P p) ==> (!!q. P q ==> Q (- q)) ==> EX p. Q p"
  by (erule exE, rule_tac x="-p" in exI, auto)}

(* for premises that contain binders *)
fun prem_bound_tac pred_names ctxt = 
let
  fun trans_prem_tac pred_names ctxt = 
    SUBPROOF (fn {prems, context, ...} => 
    let
      val prems' = map (transform_prem1 context pred_names) prems
    in
      resolve_tac prems' 1
    end) ctxt
  val prod_simps = @{thms split_conv permute_prod.simps prod_alpha_def prod_rel.simps alphas}
in
  EVERY' 
    [ etac exi_neg,
      resolve_tac @{thms alpha_gen_sym_eqvt},
      asm_full_simp_tac (HOL_ss addsimps prod_simps),
      Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
      trans_prem_tac pred_names ctxt ] 
end

fun prove_sym_tac pred_names intros induct ctxt =
let
  val prem_eq_tac = rtac @{thm sym} THEN' atac   
  val prem_unbound_tac = atac

  val prem_cases_tacs = FIRST' 
    [prem_eq_tac, prem_unbound_tac, prem_bound_tac pred_names ctxt]
in
  HEADGOAL (rtac induct THEN_ALL_NEW 
    (resolve_tac intros THEN_ALL_NEW prem_cases_tacs))
end

fun prep_sym_goal alpha_trm (arg1, arg2) =
let
  val lhs = alpha_trm $ arg1 $ arg2
  val rhs = alpha_trm $ arg2 $ arg1
in
  HOLogic.mk_imp (lhs, rhs)  
end

fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
let
  val alpha_names =  map (fst o dest_Const) alpha_trms
  val arg_tys = 
    alpha_trms
    |> map fastype_of
    |> map domain_type  
  val (arg_names1, (arg_names2, ctxt')) =
    ctxt
    |> Variable.variant_fixes (replicate (length arg_tys) "x") 
    ||> Variable.variant_fixes (replicate (length arg_tys) "y")   
  val args1 = map Free (arg_names1 ~~ arg_tys) 
  val args2 = map Free (arg_names2 ~~ arg_tys)
  val goal = HOLogic.mk_Trueprop 
    (foldr1 HOLogic.mk_conj (map2 prep_sym_goal alpha_trms (args1 ~~ args2)))	      
in
  Goal.prove ctxt' [] [] goal 
    (fn {context,...} =>  prove_sym_tac alpha_names alpha_intros alpha_induct context)
    |> singleton (ProofContext.export ctxt' ctxt)
    |> Datatype_Aux.split_conj_thm 
    |> map (fn th => zero_var_indexes (th RS mp))
end



(** transitivity proof for alphas **)

(* applies cases rules and resolves them with the last premise *)
fun ecases_tac cases = 
  Subgoal.FOCUS (fn {prems, ...} =>
    HEADGOAL (resolve_tac cases THEN' rtac (List.last prems)))

fun aatac pred_names = 
  SUBPROOF (fn {prems, context, ...} =>
    HEADGOAL (resolve_tac (map (transform_prem1 context pred_names) prems)))
  
(* instantiates exI with the permutation p + q *)
val perm_inst_tac =
  Subgoal.FOCUS (fn {params, ...} => 
    let
      val (p, q) = pairself snd (last2 params)
      val pq_inst = foldl1 (uncurry Thm.capply) [@{cterm "plus::perm => perm => perm"}, p, q]
      val exi_inst = Drule.instantiate' [SOME (@{ctyp "perm"})] [NONE, SOME pq_inst] @{thm exI}
    in
      HEADGOAL (rtac exi_inst)
    end)

fun non_trivial_cases_tac pred_names intros ctxt = 
let
  val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel.simps}
in
  resolve_tac intros
  THEN_ALL_NEW (asm_simp_tac HOL_basic_ss THEN' 
    TRY o EVERY'   (* if binders are present *)
      [ etac @{thm exE},
        etac @{thm exE},
        perm_inst_tac ctxt, 
        resolve_tac @{thms alpha_trans_eqvt}, 
        atac,
        aatac pred_names ctxt, 
        Nominal_Permeq.eqvt_tac ctxt [] [] THEN' rtac @{thm refl},
        asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
end
			  
fun prove_trans_tac pred_names raw_dt_thms intros induct cases ctxt =
let
  fun all_cases ctxt = 
    asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms) 
    THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
in
  HEADGOAL (rtac induct THEN_ALL_NEW  
    EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
             ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ])
end

fun prep_trans_goal alpha_trm ((arg1, arg2), arg_ty) =
let
  val lhs = alpha_trm $ arg1 $ arg2
  val mid = alpha_trm $ arg2 $ (Bound 0)
  val rhs = alpha_trm $ arg1 $ (Bound 0) 
in
  HOLogic.mk_imp (lhs, 
    HOLogic.all_const arg_ty $ Abs ("z", arg_ty, 
      HOLogic.mk_imp (mid, rhs)))
end

val norm = @{lemma "A --> (!x. B x --> C x) ==> (!!x. [|A; B x|] ==> C x)" by simp}

fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
let
  val alpha_names =  map (fst o dest_Const) alpha_trms
  val arg_tys = 
    alpha_trms
    |> map fastype_of
    |> map domain_type  
  val (arg_names1, (arg_names2, ctxt')) =
    ctxt
    |> Variable.variant_fixes (replicate (length arg_tys) "x") 
    ||> Variable.variant_fixes (replicate (length arg_tys) "y")
  val args1 = map Free (arg_names1 ~~ arg_tys) 
  val args2 = map Free (arg_names2 ~~ arg_tys)
  val goal = HOLogic.mk_Trueprop 
    (foldr1 HOLogic.mk_conj (map2 prep_trans_goal alpha_trms (args1 ~~ args2 ~~ arg_tys))) 
in
  Goal.prove ctxt' [] [] goal 
    (fn {context,...} =>  
       prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_induct alpha_cases context)
    |> singleton (ProofContext.export ctxt' ctxt)
    |> Datatype_Aux.split_conj_thm 
    |> map (fn th => zero_var_indexes (th RS norm))
end

(* proves the equivp predicate for all alphas *)

val equivp_intro = 
  @{lemma "[|!x. R x x; !x y. R x y --> R y x; !x y z. R x y --> R y z --> R x z|] ==> equivp R"
    by (rule equivpI, unfold reflp_def symp_def transp_def, blast+)}

fun raw_prove_equivp alphas refl symm trans ctxt = 
let
  val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars
  val refl' = map atomize refl
  val symm' = map atomize symm
  val trans' = map atomize trans
  fun prep_goal t = 
    HOLogic.mk_Trueprop (Const (@{const_name "equivp"}, fastype_of t --> @{typ bool}) $ t) 
in    
  Goal.prove_multi ctxt [] [] (map prep_goal alphas)
  (K (HEADGOAL (Goal.conjunction_tac THEN_ALL_NEW (rtac equivp_intro THEN' 
     RANGE [resolve_tac refl', resolve_tac symm', resolve_tac trans']))))
end


(* proves that alpha_raw implies alpha_bn *)

fun is_true @{term "Trueprop True"} = true
  | is_true _ = false 

fun raw_prove_bn_imp_tac pred_names alpha_intros ctxt = 
  SUBPROOF (fn {prems, context, ...} => 
    let
      val prems' = flat (map Datatype_Aux.split_conj_thm prems)
      val prems'' = map (transform_prem1 context pred_names) prems'
    in
      HEADGOAL 
        (REPEAT_ALL_NEW 
           (FIRST' [ rtac @{thm TrueI}, 
                     rtac @{thm conjI}, 
                     resolve_tac prems', 
                     resolve_tac prems'',
                     resolve_tac alpha_intros ]))
    end) ctxt

fun raw_prove_bn_imp alpha_trms alpha_bns alpha_intros alpha_induct ctxt =
let
  val alpha_names =  map (fst o dest_Const) alpha_trms

  val arg_tys = 
    alpha_trms
    |> map fastype_of
    |> map domain_type
  val arg_bn_tys = 
    alpha_bns
    |> map fastype_of
    |> map domain_type
  val (arg_names1, (arg_names2, ctxt')) =
    ctxt
    |> Variable.variant_fixes (replicate (length arg_tys) "x") 
    ||> Variable.variant_fixes (replicate (length arg_tys) "y")
  val arg_bn_names1 = map (lookup (arg_tys ~~ arg_names1)) arg_bn_tys
  val arg_bn_names2 = map (lookup (arg_tys ~~ arg_names2)) arg_bn_tys
  val args1 = map Free (arg_names1 ~~ arg_tys)
  val args2 = map Free (arg_names2 ~~ arg_tys)
  val arg_bns1 = map Free (arg_bn_names1 ~~ arg_bn_tys)
  val arg_bns2 = map Free (arg_bn_names2 ~~ arg_bn_tys)

  val alpha_bn_trms = map2 (fn t => fn (ar1, ar2) => t $ ar1 $ ar2) alpha_bns (arg_bns1 ~~ arg_bns2)
  val true_trms = map (K @{term True}) arg_tys

  val goal_rhs = 
    group ((arg_bn_tys ~~ alpha_bn_trms) @ (arg_tys ~~ true_trms))
    |> map snd 
    |> map (foldr1 HOLogic.mk_conj)

  val goal_lhs = map2 (fn t => fn (ar1, ar2) => t $ ar1 $ ar2) alpha_trms (args1 ~~ args2)
  val goal_rest = map (fn t => HOLogic.mk_imp (t, @{term "True"})) alpha_bn_trms  

  val goal =
    (map2 (curry HOLogic.mk_imp) goal_lhs goal_rhs) @ goal_rest
    |> foldr1 HOLogic.mk_conj
    |> HOLogic.mk_Trueprop
in
  Goal.prove ctxt' [] [] goal
    (fn {context, ...} => 
       HEADGOAL (DETERM o (rtac alpha_induct) 
         THEN_ALL_NEW (raw_prove_bn_imp_tac alpha_names alpha_intros context)))
  |> singleton (ProofContext.export ctxt' ctxt)
  |> Datatype_Aux.split_conj_thm 
  |> map (fn th => zero_var_indexes (th RS mp))
  |> map Datatype_Aux.split_conj_thm 
  |> flat
  |> filter_out (is_true o concl_of)
end

end (* structure *)