theory IntEx
imports QuotMain
begin
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient my_int = "nat \<times> nat" / intrel
apply(unfold equivp_def)
apply(auto simp add: mem_def expand_fun_eq)
done
thm quotient_thm
thm my_int_equivp
print_theorems
print_quotients
quotient_def
ZERO::"my_int"
where
"ZERO \<equiv> (0::nat, 0::nat)"
ML {* print_qconstinfo @{context} *}
term ZERO
thm ZERO_def
ML {* prop_of @{thm ZERO_def} *}
ML {* separate *}
quotient_def
ONE::"my_int"
where
"ONE \<equiv> (1::nat, 0::nat)"
ML {* print_qconstinfo @{context} *}
term ONE
thm ONE_def
fun
my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_plus (x, y) (u, v) = (x + u, y + v)"
quotient_def
PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"PLUS \<equiv> my_plus"
term my_plus
term PLUS
thm PLUS_def
fun
my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_neg (x, y) = (y, x)"
quotient_def
NEG::"my_int \<Rightarrow> my_int"
where
"NEG \<equiv> my_neg"
term NEG
thm NEG_def
definition
MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MINUS z w = PLUS z (NEG w)"
fun
my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
quotient_def
MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MULT \<equiv> my_mult"
term MULT
thm MULT_def
(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"my_le (x, y) (u, v) = (x+v \<le> u+y)"
quotient_def
LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LE \<equiv> my_le"
term LE
thm LE_def
definition
LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LESS z w = (LE z w \<and> z \<noteq> w)"
term LESS
thm LESS_def
definition
ABS :: "my_int \<Rightarrow> my_int"
where
"ABS i = (if (LESS i ZERO) then (NEG i) else i)"
definition
SIGN :: "my_int \<Rightarrow> my_int"
where
"SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"
ML {* print_qconstinfo @{context} *}
lemma plus_sym_pre:
shows "my_plus a b \<approx> my_plus b a"
apply(cases a)
apply(cases b)
apply(auto)
done
lemma list_equiv_rsp[quotient_rsp]:
shows "(op \<approx> ===> op \<approx> ===> op =) op \<approx> op \<approx>"
by auto
lemma ho_plus_rsp[quotient_rsp]:
shows "(intrel ===> intrel ===> intrel) my_plus my_plus"
by (simp)
ML {* val qty = @{typ "my_int"} *}
ML {* val ty_name = "my_int" *}
ML {* val rsp_thms = @{thms ho_plus_rsp} *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *}
ML {* fun lift_tac_intex lthy t = lift_tac lthy t [rel_eqv] *}
ML {* fun inj_repabs_tac_intex lthy = inj_repabs_tac lthy [rel_refl] [trans2] *}
ML {* fun all_inj_repabs_tac_intex lthy = all_inj_repabs_tac lthy [rel_refl] [trans2] *}
lemma test1: "my_plus a b = my_plus a b"
apply(rule refl)
done
abbreviation
"Abs \<equiv> ABS_my_int"
abbreviation
"Rep \<equiv> REP_my_int"
abbreviation
"Resp \<equiv> Respects"
lemma "PLUS a b = PLUS a b"
apply(tactic {* procedure_tac @{context} @{thm test1} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
apply(tactic {* clean_tac @{context} 1 *})
done
lemma test2: "my_plus a = my_plus a"
apply(rule refl)
done
lemma "PLUS a = PLUS a"
apply(tactic {* procedure_tac @{context} @{thm test2} 1 *})
oops
lemma test3: "my_plus = my_plus"
apply(rule refl)
done
lemma "PLUS = PLUS"
apply(tactic {* procedure_tac @{context} @{thm test3} 1 *})
oops
lemma "PLUS a b = PLUS b a"
apply(tactic {* procedure_tac @{context} @{thm plus_sym_pre} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* inj_repabs_tac_intex @{context} 1*})
apply(tactic {* clean_tac @{context} 1 *})
done
lemma plus_assoc_pre:
shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"
apply (cases i)
apply (cases j)
apply (cases k)
apply (simp)
done
lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
apply(tactic {* clean_tac @{context} 1 *})
done
lemma ho_tst: "foldl my_plus x [] = x"
apply simp
done
(* I believe it's true. *)
lemma foldl_rsp[quotient_rsp]:
"((op \<approx> ===> op \<approx> ===> op \<approx>) ===> op \<approx> ===> list_rel op \<approx> ===> op \<approx>) foldl foldl"
apply (simp only: fun_rel.simps)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (induct_tac xb yb rule: list_induct2) (* To finish I need to give it: arbitrary:xa ya *)
sorry
lemma "foldl PLUS x [] = x"
apply(tactic {* procedure_tac @{context} @{thm ho_tst} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
apply(rule nil_rsp)
apply(tactic {* quotient_tac @{context} 1*})
apply(simp only: fun_map.simps id_simps)
apply(simp only: Quotient_abs_rep[OF fun_quotient[OF Quotient_my_int fun_quotient[OF Quotient_my_int Quotient_my_int]]])
apply(simp only: Quotient_abs_rep[OF list_quotient[OF Quotient_my_int]])
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int])
apply(tactic {* clean_tac @{context} 1 *})
sorry
lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)"
sorry
lemma "foldl PLUS x (h # t) = PLUS h (foldl PLUS x t)"
apply(tactic {* procedure_tac @{context} @{thm ho_tst2} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
apply(rule cons_rsp)
apply(tactic {* quotient_tac @{context} 1 *})
apply(simp only: fun_map.simps id_simps)
apply(simp only: Quotient_abs_rep[OF fun_quotient[OF Quotient_my_int fun_quotient[OF Quotient_my_int Quotient_my_int]]])
apply(simp only: Quotient_abs_rep[OF list_quotient[OF Quotient_my_int]])
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int])
apply(simp only: cons_prs[OF Quotient_my_int])
apply(tactic {* clean_tac @{context} 1 *})
done