restored the old behaviour of having an eqvts list; the transformed theorems are stored in eqvts_raw
(* Title: nominal_thmdecls.ML
Author: Christian Urban
Infrastructure for the lemma collection "eqvts".
Provides the attributes [eqvt] and [eqvt_force], and the theorem
lists eqvts and eqvts_raw. The first attribute will store the theorem
in the eqvts list and also in the eqvts_raw list. For the latter
the theorem is expected to be of the form
p o (c x1 x2 ...) = c (p o x1) (p o x2) ...
and is stored in the form
p o c == c
The [eqvt_force] attribute just adds the theorem to eqvts.
TODO:
- deal with eqvt-lemmas of the form
c x1 x2 ... ==> c (p o x1) (p o x2) ..
*)
signature NOMINAL_THMDECLS =
sig
val eqvt_add: attribute
val eqvt_del: attribute
val eqvt_force_add: attribute
val eqvt_force_del: attribute
val setup: theory -> theory
val get_eqvt_thms: Proof.context -> thm list
val get_eqvt_raw_thms: Proof.context -> thm list
end;
structure Nominal_ThmDecls: NOMINAL_THMDECLS =
struct
structure EqvtData = Generic_Data
(
type T = (thm * thm option) Item_Net.T;
val empty = Item_Net.init (eq_fst Thm.eq_thm_prop) (single o Thm.full_prop_of o fst)
val extend = I;
val merge = Item_Net.merge;
);
val eqvts = (map fst) o Item_Net.content o EqvtData.get;
val eqvts_raw = (map_filter snd) o Item_Net.content o EqvtData.get;
val get_eqvt_thms = eqvts o Context.Proof;
val get_eqvt_raw_thms = eqvts_raw o Context.Proof;
val add_thm = EqvtData.map o Item_Net.update;
val del_thm = EqvtData.map o Item_Net.remove;
val add_force_thm = EqvtData.map o Item_Net.update;
val del_force_thm = EqvtData.map o Item_Net.remove;
fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t)
| dest_perm t = raise TERM("dest_perm", [t])
fun mk_perm p trm =
let
val ty = fastype_of trm
in
Const (@{const_name "permute"}, @{typ "perm"} --> ty --> ty) $ p $ trm
end
fun eqvt_transform_tac thm = REPEAT o FIRST'
[CHANGED o simp_tac (HOL_basic_ss addsimps @{thms permute_minus_cancel}),
rtac (thm RS @{thm trans}),
rtac @{thm trans[OF permute_fun_def]} THEN' rtac @{thm ext}]
(* transform equations into the required form *)
fun transform_eq ctxt thm lhs rhs =
let
val (p, t) = dest_perm lhs
val (c, args) = strip_comb t
val (c', args') = strip_comb rhs
val eargs = map Envir.eta_contract args
val eargs' = map Envir.eta_contract args'
val p_str = fst (fst (dest_Var p))
val goal = HOLogic.mk_Trueprop (HOLogic.mk_eq (mk_perm p c, c))
in
if c <> c'
then error "eqvt lemma is not of the right form (constants do not agree)"
else if eargs' <> map (mk_perm p) eargs
then error "eqvt lemma is not of the right form (arguments do not agree)"
else if args = []
then thm
else Goal.prove ctxt [p_str] [] goal
(fn _ => eqvt_transform_tac thm 1)
end
fun transform addel_fn thm context =
let
val ctxt = Context.proof_of context
val trm = HOLogic.dest_Trueprop (prop_of thm)
in
case trm of
Const (@{const_name "op ="}, _) $ lhs $ rhs =>
let
val thm2 = transform_eq ctxt thm lhs rhs RS @{thm eq_reflection}
in
addel_fn (thm, SOME thm2) context
end
| _ => raise (error "only (op=) case implemented yet")
end
val eqvt_add = Thm.declaration_attribute (transform add_thm);
val eqvt_del = Thm.declaration_attribute (transform del_thm);
val eqvt_force_add = Thm.declaration_attribute (add_force_thm o rpair NONE);
val eqvt_force_del = Thm.declaration_attribute (del_force_thm o rpair NONE);
val setup =
Attrib.setup @{binding "eqvt"} (Attrib.add_del eqvt_add eqvt_del)
(cat_lines ["declaration of equivariance lemmas - they will automtically be",
"brought into the form p o c = c"]) #>
Attrib.setup @{binding "eqvt_force"} (Attrib.add_del eqvt_force_add eqvt_force_del)
(cat_lines ["declaration of equivariance lemmas - no",
"transformation is performed"]) #>
PureThy.add_thms_dynamic (@{binding "eqvts"}, eqvts) #>
PureThy.add_thms_dynamic (@{binding "eqvts_raw"}, eqvts_raw);
end;