restored the old behaviour of having an eqvts list; the transformed theorems are stored in eqvts_raw
(* Title: nominal_thmdecls.ML
Author: Brian Huffman, Christian Urban
*)
signature NOMINAL_PERMEQ =
sig
val eqvt_tac: Proof.context -> int -> tactic
end;
(* TODO:
- provide a method interface with the usual add and del options
- print a warning if for a constant no eqvt lemma is stored
- there seems to be too much simplified in case of multiple
permutations, like
p o q o r o x
we usually only want the outermost permutation to "float" in
*)
structure Nominal_Permeq: NOMINAL_PERMEQ =
struct
local
fun eqvt_apply_conv ctxt ct =
case (term_of ct) of
(Const (@{const_name "permute"}, _) $ _ $ (_ $ _)) =>
let
val (perm, t) = Thm.dest_comb ct
val (_, p) = Thm.dest_comb perm
val (f, x) = Thm.dest_comb t
val a = ctyp_of_term x;
val b = ctyp_of_term t;
val ty_insts = map SOME [b, a]
val term_insts = map SOME [p, f, x]
in
Drule.instantiate' ty_insts term_insts @{thm eqvt_apply}
end
| _ => Conv.no_conv ct
fun eqvt_lambda_conv ctxt ct =
case (term_of ct) of
(Const (@{const_name "permute"}, _) $ _ $ Abs _) =>
Conv.rewr_conv @{thm eqvt_lambda} ct
| _ => Conv.no_conv ct
in
fun eqvt_conv ctxt ct =
Conv.first_conv
[ Conv.rewr_conv @{thm eqvt_bound},
eqvt_apply_conv ctxt
then_conv Conv.comb_conv (eqvt_conv ctxt),
eqvt_lambda_conv ctxt
then_conv Conv.abs_conv (fn (v, ctxt) => eqvt_conv ctxt) ctxt,
More_Conv.rewrs_conv (Nominal_ThmDecls.get_eqvt_raw_thms ctxt),
Conv.all_conv
] ct
fun eqvt_tac ctxt =
CONVERSION (More_Conv.bottom_conv (fn ctxt => eqvt_conv ctxt) ctxt)
end
end; (* structure *)