theory QuotProd
imports QuotMain
begin
fun
prod_rel
where
"prod_rel R1 R2 = (\<lambda>(a,b) (c,d). R1 a c \<and> R2 b d)"
declare [[map * = (prod_fun, prod_rel)]]
lemma prod_equivp[quot_equiv]:
assumes a: "equivp R1"
assumes b: "equivp R2"
shows "equivp (prod_rel R1 R2)"
unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
apply (auto simp add: equivp_reflp[OF a] equivp_reflp[OF b])
apply (simp only: equivp_symp[OF a])
apply (simp only: equivp_symp[OF b])
using equivp_transp[OF a] apply blast
using equivp_transp[OF b] apply blast
done
lemma prod_quotient[quot_thm]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)"
unfolding Quotient_def
using q1 q2
apply (simp add: Quotient_abs_rep Quotient_rel_rep)
using Quotient_rel[OF q1] Quotient_rel[OF q2]
by blast
lemma pair_rsp[quot_respect]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair"
by simp
lemma pair_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair"
apply (simp add: expand_fun_eq)
apply (simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
done
lemma fst_rsp[quot_respect]:
assumes "Quotient R1 Abs1 Rep1"
assumes "Quotient R2 Abs2 Rep2"
shows "(prod_rel R1 R2 ===> R1) fst fst"
by simp
lemma fst_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst"
apply (simp add: expand_fun_eq)
apply (simp add: Quotient_abs_rep[OF q1])
done
lemma snd_rsp[quot_respect]:
assumes "Quotient R1 Abs1 Rep1"
assumes "Quotient R2 Abs2 Rep2"
shows "(prod_rel R1 R2 ===> R2) snd snd"
by simp
lemma snd_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd"
apply (simp add: expand_fun_eq)
apply (simp add: Quotient_abs_rep[OF q2])
done
lemma split_rsp[quot_respect]:
"((R1 ===> R2 ===> op =) ===> (prod_rel R1 R2) ===> op =) split split"
by auto
lemma split_prs[quot_preserve]:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(((Abs1 ---> Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> id) split) = split"
by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
lemma prod_fun_id[id_simps]:
shows "prod_fun id id = id"
by (simp add: prod_fun_def)
lemma prod_rel_eq[id_simps]:
shows "(prod_rel (op =) (op =)) = (op =)"
apply (rule ext)+
apply auto
done
end