modified mk_resp_arg so that the user can give terms as equivalence relations, not just constants
theory AbsRepTest
imports "../QuotMain" "../QuotList" "../QuotOption" "../QuotSum" "../QuotProd" List
begin
quotient_type
fset = "'a list" / "\<lambda>(xs::'a list) ys. \<forall>e. e \<in> set xs \<longleftrightarrow> e \<in> set ys"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
apply(auto)
done
print_quotients
ML{*
Quotient_Info.quotient_rules_get @{context}
*}
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient_type int = "nat \<times> nat" / intrel
sorry
print_quotients
ML {*
open Quotient_Term;
*}
ML {*
absrep_fun_chk absF @{context} (@{typ "(((nat * nat) list) * 'a) option"}, @{typ "((int fset) * 'a) option"})
|> Syntax.string_of_term @{context}
|> writeln
*}
term "option_map (prod_fun (abs_fset \<circ> map abs_int) id)"
term "option_map (prod_fun (map rep_int \<circ> rep_fset) id)"
term "option_map (map rep_int \<circ> rep_fset)"
term "option_map (abs_fset o (map abs_int))"
term "abs_fset"
ML {*
absrep_fun_chk absF @{context} (@{typ "(nat * nat) list"}, @{typ "int fset"})
|> Syntax.string_of_term @{context}
|> writeln
*}
term "map abs_int"
term "abs_fset o map abs_int"
ML {*
absrep_fun_chk absF @{context} (@{typ "('a list) list"}, @{typ "('a fset) fset"})
|> Syntax.string_of_term @{context}
|> writeln
*}
ML {*
absrep_fun_chk absF @{context} (@{typ "('a list) list \<Rightarrow> 'a"}, @{typ "('a fset) fset \<Rightarrow> 'a"})
|> Syntax.string_of_term @{context}
|> writeln
*}
end