Nominal/Ex/LetRec.thy
author Christian Urban <urbanc@in.tum.de>
Wed, 29 Jun 2011 16:44:54 +0100
changeset 2924 06bf338e3215
parent 2877 3e82c1ced5e4
child 2950 0911cb7bf696
permissions -rw-r--r--
merged

theory LetRec
imports "../Nominal2"
begin

atom_decl name

nominal_datatype let_rec:
 trm =
  Var "name"
| App "trm" "trm"
| Lam x::"name" t::"trm"     bind (set) x in t
| Let_Rec bp::"bp" t::"trm"  bind (set) "bn bp" in bp t
and bp =
  Bp "name" "trm"
binder
  bn::"bp \<Rightarrow> atom set"
where
  "bn (Bp x t) = {atom x}"

thm let_rec.distinct
thm let_rec.induct
thm let_rec.exhaust
thm let_rec.fv_defs
thm let_rec.bn_defs
thm let_rec.perm_simps
thm let_rec.eq_iff
thm let_rec.fv_bn_eqvt
thm let_rec.size_eqvt

lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
  by (simp add: permute_pure)

nominal_primrec
    height_trm :: "trm \<Rightarrow> nat"
and height_bp :: "bp \<Rightarrow> nat"
where
  "height_trm (Var x) = 1"
| "height_trm (App l r) = max (height_trm l) (height_trm r)"
| "height_trm (Lam v b) = 1 + (height_trm b)"
| "height_trm (Let_Rec bp b) = max (height_bp bp) (height_trm b)"
| "height_bp (Bp v t) = height_trm t"
  apply (simp only: eqvt_def height_trm_height_bp_graph_def)
  apply (rule, perm_simp, rule, rule TrueI)
  apply auto
  apply (case_tac x)
  apply (case_tac a rule: let_rec.exhaust(1))
  apply auto
  apply (case_tac b rule: let_rec.exhaust(2))
  apply blast
  apply (erule Abs_set_fcb)
  apply (simp_all add: pure_fresh)
  apply (simp add: eqvt_at_def)
  apply (simp add: Abs_eq_iff2)
  apply (simp add: alphas)
  apply clarify
  apply (rule trans)
  apply(rule_tac p="p" in supp_perm_eq[symmetric])
  apply (simp add: pure_supp fresh_star_def)
  apply (simp only: eqvts)
  apply (simp add: eqvt_at_def)
  done

termination by lexicographic_order

end