theory Lambda
imports "../Nominal/Nominal2"
begin
section {* Definitions for Lambda Terms *}
text {* type of variables *}
atom_decl name
subsection {* Alpha-Equated Lambda Terms *}
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100)
text {* some automatically derived theorems *}
thm lam.distinct
thm lam.eq_iff
thm lam.fresh
thm lam.size
thm lam.exhaust
thm lam.strong_exhaust
thm lam.induct
thm lam.strong_induct
subsection {* Height Function *}
nominal_function
height :: "lam \<Rightarrow> int"
where
"height (Var x) = 1"
| "height (App t1 t2) = max (height t1) (height t2) + 1"
| "height (Lam [x].t) = height t + 1"
apply(simp add: eqvt_def height_graph_aux_def)
apply(rule TrueI)
apply(rule_tac y="x" in lam.exhaust)
using [[simproc del: alpha_lst]]
apply(auto)
apply(erule_tac c="()" in Abs_lst1_fcb2)
apply(simp_all add: fresh_def pure_supp eqvt_at_def fresh_star_def)
done
nominal_termination (eqvt)
by lexicographic_order
subsection {* Capture-Avoiding Substitution *}
nominal_function
subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_ [_ ::= _]" [90,90,90] 90)
where
"(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "atom x \<sharp> (y, s) \<Longrightarrow> (Lam [x]. t)[y ::= s] = Lam [x].(t[y ::= s])"
unfolding eqvt_def subst_graph_aux_def
apply(simp)
apply(rule TrueI)
using [[simproc del: alpha_lst]]
apply(auto)
apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
apply(blast)+
apply(simp_all add: fresh_star_def fresh_Pair_elim)
apply(erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp_all add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def)
apply(simp add: perm_supp_eq fresh_star_Pair)
apply(simp add: eqvt_at_def)
apply(simp add: perm_supp_eq fresh_star_Pair)
done
nominal_termination (eqvt)
by lexicographic_order
lemma fresh_fact:
assumes a: "atom z \<sharp> s"
and b: "z = y \<or> atom z \<sharp> t"
shows "atom z \<sharp> t[y ::= s]"
using a b
by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
(auto simp add: fresh_at_base)
end