(* The Call-by-Value Lambda Calculus *)
theory Lt
imports "../../Nominal2"
begin
atom_decl name
nominal_datatype lt =
Var name ("_~" [150] 149)
| App lt lt (infixl "$$" 100)
| Lam x::"name" t::"lt" binds x in t
nominal_function
subst :: "lt \<Rightarrow> name \<Rightarrow> lt \<Rightarrow> lt" ("_ [_ ::= _]" [90, 90, 90] 90)
where
"(Var x)[y ::= s] = (if x = y then s else (Var x))"
| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
| "atom x \<sharp> (y, s) \<Longrightarrow> (Lam x t)[y ::= s] = Lam x (t[y ::= s])"
unfolding eqvt_def subst_graph_aux_def
apply (simp)
apply(rule TrueI)
using [[simproc del: alpha_lst]]
apply(auto simp add: lt.distinct lt.eq_iff)
apply(rule_tac y="a" and c="(aa, b)" in lt.strong_exhaust)
apply blast
apply(simp_all add: fresh_star_def fresh_Pair_elim)
apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
apply(simp add: Abs_fresh_iff)
apply(simp add: fresh_star_def fresh_Pair)
apply(simp add: eqvt_at_def)
apply(simp add: perm_supp_eq fresh_star_Pair)
apply(simp add: eqvt_at_def)
apply(simp add: perm_supp_eq fresh_star_Pair)
done
nominal_termination (eqvt) by lexicographic_order
lemma forget[simp]:
shows "atom x \<sharp> M \<Longrightarrow> M[x ::= s] = M"
by (nominal_induct M avoiding: x s rule: lt.strong_induct)
(auto simp add: lt.fresh fresh_at_base)
lemma [simp]: "supp (M[x ::= V]) <= (supp(M) - {atom x}) Un (supp V)"
by (nominal_induct M avoiding: x V rule: lt.strong_induct)
(auto simp add: lt.supp supp_at_base, blast, blast)
nominal_function
isValue:: "lt => bool"
where
"isValue (Var x) = True"
| "isValue (Lam y N) = True"
| "isValue (A $$ B) = False"
unfolding eqvt_def isValue_graph_aux_def
by (auto)
(erule lt.exhaust, auto)
nominal_termination (eqvt)
by (relation "measure size") (simp_all)
inductive
eval :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta> _" [80,80] 80)
where
evbeta: "\<lbrakk>atom x \<sharp> V; isValue V\<rbrakk> \<Longrightarrow> ((Lam x M) $$ V) \<longrightarrow>\<^isub>\<beta> (M[x ::= V])"
| ev1: "\<lbrakk>isValue V; M \<longrightarrow>\<^isub>\<beta> M' \<rbrakk> \<Longrightarrow> (V $$ M) \<longrightarrow>\<^isub>\<beta> (V $$ M')"
| ev2: "M \<longrightarrow>\<^isub>\<beta> M' \<Longrightarrow> (M $$ N) \<longrightarrow>\<^isub>\<beta> (M' $$ N)"
equivariance eval
nominal_inductive eval
done
(*lemmas [simp] = lt.supp(2)*)
lemma closedev1: assumes "s \<longrightarrow>\<^isub>\<beta> t"
shows "supp t <= supp s"
using assms
by (induct, auto simp add: lt.supp)
lemma [simp]: "~ ((Lam x M) \<longrightarrow>\<^isub>\<beta> N)"
by (rule, erule eval.cases, simp_all)
lemma [simp]: assumes "M \<longrightarrow>\<^isub>\<beta> N" shows "~ isValue M"
using assms
by (cases, auto)
inductive
eval_star :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta>\<^sup>* _" [80,80] 80)
where
evs1: "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M"
| evs2: "\<lbrakk>M \<longrightarrow>\<^isub>\<beta> M'; M' \<longrightarrow>\<^isub>\<beta>\<^sup>* M'' \<rbrakk> \<Longrightarrow> M \<longrightarrow>\<^isub>\<beta>\<^sup>* M''"
lemma eval_evs: assumes *: "M \<longrightarrow>\<^isub>\<beta> M'" shows "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M'"
by (rule evs2, rule *, rule evs1)
lemma eval_trans[trans]:
assumes "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
and "M2 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
shows "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
using assms
by (induct, auto intro: evs2)
lemma evs3[rule_format]: assumes "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
shows "M2 \<longrightarrow>\<^isub>\<beta> M3 \<longrightarrow> M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
using assms
by (induct, auto intro: eval_evs evs2)
equivariance eval_star
lemma evbeta':
fixes x :: name
assumes "isValue V" and "atom x\<sharp>V" and "N = (M[x ::= V])"
shows "((Lam x M) $$ V) \<longrightarrow>\<^isub>\<beta>\<^sup>* N"
using assms by simp (rule evs2, rule evbeta, simp_all add: evs1)
end