theory Tutorial4
imports Tutorial1 Tutorial2
begin
section {* The CBV Reduction Relation (Small-Step Semantics) *}
inductive
cbv :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>cbv _" [60, 60] 60)
where
cbv1: "\<lbrakk>val v; atom x \<sharp> v\<rbrakk> \<Longrightarrow> App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]"
| cbv2: "t \<longrightarrow>cbv t' \<Longrightarrow> App t t2 \<longrightarrow>cbv App t' t2"
| cbv3: "t \<longrightarrow>cbv t' \<Longrightarrow> App t2 t \<longrightarrow>cbv App t2 t'"
inductive
"cbv_star" :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>cbv* _" [60, 60] 60)
where
cbvs1: "e \<longrightarrow>cbv* e"
| cbvs2: "\<lbrakk>e1\<longrightarrow>cbv e2; e2 \<longrightarrow>cbv* e3\<rbrakk> \<Longrightarrow> e1 \<longrightarrow>cbv* e3"
declare cbv.intros[intro] cbv_star.intros[intro]
subsection {* EXERCISE 11 *}
text {*
Show that cbv* is transitive, by filling the gaps in the
proof below.
*}
lemma cbvs3 [intro]:
assumes a: "e1 \<longrightarrow>cbv* e2" "e2 \<longrightarrow>cbv* e3"
shows "e1 \<longrightarrow>cbv* e3"
using a
proof (induct)
case (cbvs1 e1)
have asm: "e1 \<longrightarrow>cbv* e3" by fact
show "e1 \<longrightarrow>cbv* e3" sorry
next
case (cbvs2 e1 e2 e3')
have "e1 \<longrightarrow>cbv e2" by fact
have "e2 \<longrightarrow>cbv* e3'" by fact
have "e3' \<longrightarrow>cbv* e3 \<Longrightarrow> e2 \<longrightarrow>cbv* e3" by fact
have "e3' \<longrightarrow>cbv* e3" by fact
show "e1 \<longrightarrow>cbv* e3" sorry
qed
text {*
In order to help establishing the property that the machine
calculates a normal form that corresponds to the evaluation
relation, we introduce the call-by-value small-step semantics.
*}
equivariance val
equivariance cbv
nominal_inductive cbv
avoids cbv1: "x"
unfolding fresh_star_def
by (simp_all add: lam.fresh Abs_fresh_iff fresh_Pair fresh_fact)
text {*
In order to satisfy the vc-condition we have to formulate
this relation with the additional freshness constraint
atom x \<sharp> v. Although this makes the definition vc-ompatible, it
makes the definition less useful. We can with a little bit of
pain show that the more restricted rule is equivalent to the
usual rule.
*}
lemma subst_rename:
assumes a: "atom y \<sharp> t"
shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet> t)[y ::= s]"
using a
by (nominal_induct t avoiding: x y s rule: lam.strong_induct)
(auto simp add: lam.fresh fresh_at_base)
lemma better_cbv1 [intro]:
assumes a: "val v"
shows "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]"
proof -
obtain y::"name" where fs: "atom y \<sharp> (x, t, v)" by (rule obtain_fresh)
have "App (Lam [x].t) v = App (Lam [y].((y \<leftrightarrow> x) \<bullet> t)) v" using fs
by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
also have "\<dots> \<longrightarrow>cbv ((y \<leftrightarrow> x) \<bullet> t)[y ::= v]" using fs a cbv1 by auto
also have "\<dots> = t[x ::= v]" using fs subst_rename[symmetric] by simp
finally show "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" by simp
qed
subsection {* EXERCISE 12 *}
text {*
If more simple exercises are needed, then complete the following proof.
*}
lemma cbv_in_ctx:
assumes a: "t \<longrightarrow>cbv t'"
shows "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>"
using a
proof (induct E)
case Hole
have "t \<longrightarrow>cbv t'" by fact
show "\<box>\<lbrakk>t\<rbrakk> \<longrightarrow>cbv \<box>\<lbrakk>t'\<rbrakk>" sorry
next
case (CAppL E s)
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
have "t \<longrightarrow>cbv t'" by fact
show "(CAppL E s)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppL E s)\<lbrakk>t'\<rbrakk>" sorry
next
case (CAppR s E)
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
have a: "t \<longrightarrow>cbv t'" by fact
show "(CAppR s E)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppR s E)\<lbrakk>t'\<rbrakk>" sorry
qed
section {* EXERCISE 13 *}
text {*
The point of the cbv-reduction was that we can easily relatively
establish the following property:
*}
lemma machine_implies_cbvs_ctx:
assumes a: "<e, Es> \<mapsto> <e', Es'>"
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
using a
proof (induct)
case (m1 t1 t2 Es)
show "Es\<down>\<lbrakk>App t1 t2\<rbrakk> \<longrightarrow>cbv* ((CAppL \<box> t2) # Es)\<down>\<lbrakk>t1\<rbrakk>" sorry
next
case (m2 v t2 Es)
have "val v" by fact
show "((CAppL \<box> t2) # Es)\<down>\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (CAppR v \<box> # Es)\<down>\<lbrakk>t2\<rbrakk>" sorry
next
case (m3 v x t Es)
have "val v" by fact
show "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (Es\<down>)\<lbrakk>(t[x ::= v])\<rbrakk>" sorry
qed
text {*
It is not difficult to extend the lemma above to
arbitrary reductions sequences of the machine.
*}
lemma machines_implies_cbvs_ctx:
assumes a: "<e, Es> \<mapsto>* <e', Es'>"
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
using a machine_implies_cbvs_ctx
by (induct) (blast)+
text {*
So whenever we let the machine start in an initial
state and it arrives at a final state, then there exists
a corresponding cbv-reduction sequence.
*}
corollary machines_implies_cbvs:
assumes a: "<e, []> \<mapsto>* <e', []>"
shows "e \<longrightarrow>cbv* e'"
proof -
have "[]\<down>\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* []\<down>\<lbrakk>e'\<rbrakk>"
using a machines_implies_cbvs_ctx by blast
then show "e \<longrightarrow>cbv* e'" by simp
qed
text {*
We now want to relate the cbv-reduction to the evaluation
relation. For this we need one auxiliary lemma about
inverting the e_App rule.
*}
lemma e_App_elim:
assumes a: "App t1 t2 \<Down> v"
obtains x t v' where "t1 \<Down> Lam [x].t" "t2 \<Down> v'" "t[x::=v'] \<Down> v"
using a by (cases) (auto simp add: lam.eq_iff lam.distinct)
subsection {* EXERCISE 13 *}
text {*
Complete the first and second case in the
proof below.
*}
lemma cbv_eval:
assumes a: "t1 \<longrightarrow>cbv t2" "t2 \<Down> t3"
shows "t1 \<Down> t3"
using a
proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x ::= v] \<Down> t3" by fact
show "App (Lam [x].t) v \<Down> t3" sorry
next
case (cbv2 t t' t2 t3)
have ih: "\<And>t3. t' \<Down> t3 \<Longrightarrow> t \<Down> t3" by fact
have "App t' t2 \<Down> t3" by fact
then obtain x t'' v'
where a1: "t' \<Down> Lam [x].t''"
and a2: "t2 \<Down> v'"
and a3: "t''[x ::= v'] \<Down> t3" by (rule e_App_elim)
show "App t t2 \<Down> t3" sorry
qed (auto elim!: e_App_elim)
text {*
Next we extend the lemma above to arbitray initial
sequences of cbv-reductions.
*}
lemma cbvs_eval:
assumes a: "t1 \<longrightarrow>cbv* t2" "t2 \<Down> t3"
shows "t1 \<Down> t3"
using a by (induct) (auto intro: cbv_eval)
text {*
Finally, we can show that if from a term t we reach a value
by a cbv-reduction sequence, then t evaluates to this value.
This proof is not by induction. So we have to set up the proof
with
proof -
in order to prevent Isabelle from applying a default introduction
rule.
*}
lemma cbvs_implies_eval:
assumes a: "t \<longrightarrow>cbv* v"
and b: "val v"
shows "t \<Down> v"
proof -
have "v \<Down> v" using b eval_val by simp
then show "t \<Down> v" using a cbvs_eval by auto
qed
section {* EXERCISE 15 *}
text {*
All facts tied together give us the desired property
about machines: we know that a machines transitions
correspond to cbvs transitions, and with the lemma
above they correspond to an eval judgement.
*}
theorem machines_implies_eval:
assumes a: "<t1, []> \<mapsto>* <t2, []>"
and b: "val t2"
shows "t1 \<Down> t2"
proof -
show "t1 \<Down> t2" sorry
qed
end