--- a/Nominal/Ex/Lambda.thy Wed May 19 12:29:08 2010 +0200
+++ b/Nominal/Ex/Lambda.thy Fri May 21 10:45:29 2010 +0200
@@ -503,18 +503,16 @@
apply simp
apply (rule conjI)
apply clarify
- sorry
+ oops
-thm supp_at_base
lemma new_eqvt[eqvt]: "p \<bullet> (new s) = new (p \<bullet> s)"
- sorry
+ oops
lemma subst_var_raw_eqvt[eqvt]: "p \<bullet> (subst_raw t y s) = subst_raw (p \<bullet> t) (p \<bullet> y) (p \<bullet> s)"
apply (induct t arbitrary: p y s)
apply simp_all
apply(perm_simp)
- apply simp
- sorry
+ oops
lemma subst_id: "alpha_lam_raw (subst_raw x d (Var_raw d)) x"
apply (induct x arbitrary: d)
@@ -554,6 +552,12 @@
apply (simp add: alpha_lam_raw.intros)
apply simp
apply (rule alpha_lam_raw.intros)
+ apply (rule_tac x="((new (insert (atom y) (fv_lam_raw a \<union> fv_lam_raw c) -
+ {atom name}))\<leftrightarrow>(new (insert (atom y) (fv_lam_raw b \<union> fv_lam_raw c) -
+ {atom name})))" in exI)
+ apply (simp only: alphas)
+ apply (tactic {* split_conj_tac 1 *})
+ prefer 3
sorry
lemma [quot_respect]:
@@ -576,7 +580,6 @@
apply (rule_tac x ="(x \<leftrightarrow> (new (insert (atom y) (fv_lam_raw s \<union> fv_lam_raw t) -
{atom x})))" in exI)
apply (simp only: alphas)
- apply simp
sorry
lemmas subst_simps = subst_raw.simps(1-2)[quot_lifted,no_vars]