--- a/Nominal/Nominal2_FSet.thy Wed Apr 28 08:24:46 2010 +0200
+++ b/Nominal/Nominal2_FSet.thy Wed Apr 28 08:32:33 2010 +0200
@@ -80,11 +80,11 @@
done
lemma supp_at_finsert:
- fixes S::"('a::at) fset"
- shows "supp (finsert x S) = supp x \<union> supp S"
+ fixes a::"'a::at_base"
+ shows "supp (finsert a S) = supp a \<union> supp S"
apply (subst supp_fset_to_set[symmetric])
apply (simp add: supp_finite_atom_set)
- apply (simp add: supp_at_insert[OF fin_fset_to_set])
+ apply (simp add: supp_at_base_insert[OF fin_fset_to_set])
apply (simp add: supp_fset_to_set)
done
@@ -92,7 +92,7 @@
"supp {||} = {}"
by (simp add: supp_def eqvts)
-instance fset :: (at) fs
+instance fset :: (at_base) fs
apply (default)
apply (induct_tac x rule: fset_induct)
apply (simp add: supp_fempty)
@@ -101,8 +101,9 @@
done
lemma supp_at_fset:
- "supp (fset :: 'a :: at fset) = fset_to_set (fmap atom fset)"
- apply (induct fset)
+ fixes S::"('a::at_base) fset"
+ shows "supp S = fset_to_set (fmap atom S)"
+ apply (induct S)
apply (simp add: supp_fempty)
apply (simp add: supp_at_finsert)
apply (simp add: supp_at_base)