Quot/Nominal/LamEx.thy
changeset 947 fa810f01f7b5
child 975 513ebe332964
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/Nominal/LamEx.thy	Tue Jan 26 20:07:50 2010 +0100
@@ -0,0 +1,540 @@
+theory LamEx
+imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../QuotMain" 
+begin
+
+
+(* lemmas that should be in Nominal \<dots>\<dots>must be cleaned *)
+lemma in_permute_iff:
+  shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
+apply(unfold mem_def permute_fun_def)[1]
+apply(simp add: permute_bool_def) 
+done
+
+lemma fresh_star_permute_iff:
+  shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
+apply(simp add: fresh_star_def)
+apply(auto)
+apply(drule_tac x="p \<bullet> xa" in bspec)
+apply(unfold mem_def permute_fun_def)[1] 
+apply(simp add: eqvts)
+apply(simp add: fresh_permute_iff)
+apply(rule_tac ?p1="- p" in fresh_permute_iff[THEN iffD1])
+apply(simp)
+apply(drule_tac x="- p \<bullet> xa" in bspec)
+apply(rule_tac ?p1="p" in in_permute_iff[THEN iffD1])
+apply(simp)
+apply(simp)
+done
+
+lemma fresh_minus_perm:
+  fixes p::perm
+  shows "a \<sharp> (- p) \<longleftrightarrow> a \<sharp> p"
+  apply(simp add: fresh_def)
+  apply(simp only: supp_minus_perm)
+  done
+
+lemma fresh_plus:
+  fixes p q::perm
+  shows "\<lbrakk>a \<sharp> p;  a \<sharp> q\<rbrakk> \<Longrightarrow> a \<sharp> (p + q)"
+unfolding fresh_def
+using supp_plus_perm
+apply(auto)
+done
+
+lemma fresh_star_plus:
+  fixes p q::perm
+  shows "\<lbrakk>a \<sharp>* p;  a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
+unfolding fresh_star_def
+by (simp add: fresh_plus)
+
+
+
+atom_decl name
+
+datatype rlam =
+  rVar "name"
+| rApp "rlam" "rlam"
+| rLam "name" "rlam"
+
+fun
+  rfv :: "rlam \<Rightarrow> atom set"
+where
+  rfv_var: "rfv (rVar a) = {atom a}"
+| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
+| rfv_lam: "rfv (rLam a t) = (rfv t) - {atom a}"
+
+instantiation rlam :: pt
+begin
+
+primrec
+  permute_rlam
+where
+  "permute_rlam pi (rVar a) = rVar (pi \<bullet> a)"
+| "permute_rlam pi (rApp t1 t2) = rApp (permute_rlam pi t1) (permute_rlam pi t2)"
+| "permute_rlam pi (rLam a t) = rLam (pi \<bullet> a) (permute_rlam pi t)"
+
+instance
+apply default
+apply(induct_tac [!] x)
+apply(simp_all)
+done
+
+end
+
+instantiation rlam :: fs
+begin
+
+lemma neg_conj:
+  "\<not>(P \<and> Q) \<longleftrightarrow> (\<not>P) \<or> (\<not>Q)"
+  by simp
+
+lemma infinite_Un:
+  "infinite (S \<union> T) \<longleftrightarrow> infinite S \<or> infinite T"
+  by simp
+
+instance
+apply default
+apply(induct_tac x)
+(* var case *)
+apply(simp add: supp_def)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+(* app case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps) 
+apply(simp only: rlam.inject) 
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+(* lam case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps) 
+apply(simp only: rlam.inject) 
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+done
+
+end
+
+
+(* for the eqvt proof of the alpha-equivalence *)
+declare permute_rlam.simps[eqvt]
+
+lemma rfv_eqvt[eqvt]:
+  shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
+apply(induct t)
+apply(simp_all)
+apply(simp add: permute_set_eq atom_eqvt)
+apply(simp add: union_eqvt)
+apply(simp add: Diff_eqvt)
+apply(simp add: permute_set_eq atom_eqvt)
+done
+
+inductive
+    alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
+where
+  a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
+| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
+| a3: "\<exists>pi. (rfv t - {atom a} = rfv s - {atom b} \<and> (rfv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx> s \<and> (pi \<bullet> a) = b)
+       \<Longrightarrow> rLam a t \<approx> rLam b s"
+
+text {* should be automatic with new version of eqvt-machinery *}
+lemma alpha_eqvt:
+  shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
+apply(induct rule: alpha.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(simp)
+apply(rule a3)
+apply(erule conjE)
+apply(erule exE)
+apply(erule conjE)
+apply(rule_tac x="pi \<bullet> pia" in exI)
+apply(rule conjI)
+apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
+apply(simp add: eqvts atom_eqvt)
+apply(rule conjI)
+apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
+apply(simp add: eqvts atom_eqvt)
+apply(rule conjI)
+apply(subst permute_eqvt[symmetric])
+apply(simp)
+apply(subst permute_eqvt[symmetric])
+apply(simp)
+done
+
+lemma alpha_refl:
+  shows "t \<approx> t"
+apply(induct t rule: rlam.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(rule a3)
+apply(rule_tac x="0" in exI)
+apply(simp_all add: fresh_star_def fresh_zero_perm)
+done
+
+lemma alpha_sym:
+  shows "t \<approx> s \<Longrightarrow> s \<approx> t"
+apply(induct rule: alpha.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(rule a3)
+apply(erule exE)
+apply(rule_tac x="- pi" in exI)
+apply(simp)
+apply(simp add: fresh_star_def fresh_minus_perm)
+apply(rule conjI)
+apply(erule conjE)+
+apply(rotate_tac 3)
+apply(drule_tac pi="- pi" in alpha_eqvt)
+apply(simp)
+apply(clarify)
+apply(simp)
+done
+
+lemma alpha_trans:
+  shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
+apply(induct arbitrary: t3 rule: alpha.induct)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(simp add: a1)
+apply(rotate_tac 4)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(simp add: a2)
+apply(rotate_tac 1)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(erule conjE)+
+apply(erule exE)+
+apply(erule conjE)+
+apply(rule a3)
+apply(rule_tac x="pia + pi" in exI)
+apply(simp add: fresh_star_plus)
+apply(drule_tac x="- pia \<bullet> sa" in spec)
+apply(drule mp)
+apply(rotate_tac 8)
+apply(drule_tac pi="- pia" in alpha_eqvt)
+apply(simp)
+apply(rotate_tac 11)
+apply(drule_tac pi="pia" in alpha_eqvt)
+apply(simp)
+done
+
+lemma alpha_equivp:
+  shows "equivp alpha"
+apply(rule equivpI)
+unfolding reflp_def symp_def transp_def
+apply(auto intro: alpha_refl alpha_sym alpha_trans)
+done
+
+lemma alpha_rfv:
+  shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
+apply(induct rule: alpha.induct)
+apply(simp)
+apply(simp)
+apply(simp)
+done
+
+(* PROBABLY NOT TRUE !!! needed for lifting 
+lemma alpha_fresh:
+  assumes a: "t \<approx> s"
+  shows "a\<sharp>t \<Longrightarrow> a\<sharp>s"
+using a
+apply(induct)
+*)
+
+quotient_type lam = rlam / alpha
+  by (rule alpha_equivp)
+
+quotient_definition
+  "Var :: name \<Rightarrow> lam"
+as
+  "rVar"
+
+quotient_definition
+   "App :: lam \<Rightarrow> lam \<Rightarrow> lam"
+as
+  "rApp"
+
+quotient_definition
+  "Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
+as
+  "rLam"
+
+quotient_definition
+  "fv :: lam \<Rightarrow> atom set"
+as
+  "rfv"
+
+lemma perm_rsp[quot_respect]:
+  "(op = ===> alpha ===> alpha) permute permute"
+  apply(auto)
+  apply(rule alpha_eqvt)
+  apply(simp)
+  done
+
+lemma rVar_rsp[quot_respect]:
+  "(op = ===> alpha) rVar rVar"
+  by (auto intro: a1)
+
+lemma rApp_rsp[quot_respect]: 
+  "(alpha ===> alpha ===> alpha) rApp rApp"
+  by (auto intro: a2)
+
+lemma rLam_rsp[quot_respect]: 
+  "(op = ===> alpha ===> alpha) rLam rLam"
+  apply(auto)
+  apply(rule a3)
+  apply(rule_tac x="0" in exI)
+  unfolding fresh_star_def 
+  apply(simp add: fresh_star_def fresh_zero_perm)
+  apply(simp add: alpha_rfv)
+  done
+
+lemma rfv_rsp[quot_respect]: 
+  "(alpha ===> op =) rfv rfv"
+apply(simp add: alpha_rfv)
+done
+
+
+
+(* NOT SURE see above
+lemma fresh_rsp:
+  "(op = ===> alpha ===> op =) fresh fresh"
+  apply(auto)
+*)
+
+section {* lifted theorems *}
+
+lemma lam_induct:
+  "\<lbrakk>\<And>name. P (Var name);
+    \<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
+    \<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk> 
+    \<Longrightarrow> P lam"
+  apply (lifting rlam.induct)
+  done
+
+instantiation lam :: pt
+begin
+
+quotient_definition
+  "permute_lam :: perm \<Rightarrow> lam \<Rightarrow> lam"
+as
+  "permute :: perm \<Rightarrow> rlam \<Rightarrow> rlam"
+
+lemma permute_lam [simp]:
+  shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
+  and   "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
+  and   "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
+apply(lifting permute_rlam.simps)
+done
+
+instance
+apply default
+apply(induct_tac [!] x rule: lam_induct)
+apply(simp_all)
+done
+
+end
+
+lemma fv_lam [simp]: 
+  shows "fv (Var a) = {atom a}"
+  and   "fv (App t1 t2) = fv t1 \<union> fv t2"
+  and   "fv (Lam a t) = fv t - {atom a}"
+apply(lifting rfv_var rfv_app rfv_lam)
+done
+
+lemma a1: 
+  "a = b \<Longrightarrow> Var a = Var b"
+  by  (lifting a1)
+
+lemma a2: 
+  "\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
+  by  (lifting a2)
+
+lemma a3: 
+  "\<lbrakk>\<exists>pi. (fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) = s \<and> (pi \<bullet> a) = b)\<rbrakk> 
+   \<Longrightarrow> Lam a t = Lam b s"
+  apply  (lifting a3)
+  done
+
+lemma alpha_cases: 
+  "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
+    \<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
+    \<And>t a s b. \<lbrakk>a1 = Lam a t; a2 = Lam b s; 
+         \<exists>pi. fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a}) \<sharp>* pi \<and> (pi \<bullet> t) = s \<and> pi \<bullet> a = b\<rbrakk> 
+   \<Longrightarrow> P\<rbrakk>
+    \<Longrightarrow> P"
+  by (lifting alpha.cases)
+
+lemma alpha_induct: 
+  "\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
+    \<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
+     \<And>t a s b.
+        \<lbrakk>\<exists>pi. fv t - {atom a} = fv s - {atom b} \<and>
+         (fv t - {atom a}) \<sharp>* pi \<and> ((pi \<bullet> t) = s \<and> qxb (pi \<bullet> t) s) \<and> pi \<bullet> a = b\<rbrakk> 
+     \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
+    \<Longrightarrow> qxb qx qxa"
+  by (lifting alpha.induct)
+
+(* should they lift automatically *)
+lemma lam_inject [simp]: 
+  shows "(Var a = Var b) = (a = b)"
+  and   "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
+apply(lifting rlam.inject(1) rlam.inject(2))
+apply(auto)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(simp add: alpha.a1)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(rule alpha.a2)
+apply(simp_all)
+done
+
+lemma rlam_distinct:
+  shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
+  and   "\<not>(rApp rlam1' rlam2' \<approx> rVar nam)"
+  and   "\<not>(rVar nam \<approx> rLam nam' rlam')"
+  and   "\<not>(rLam nam' rlam' \<approx> rVar nam)"
+  and   "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
+  and   "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
+apply auto
+apply(erule alpha.cases)
+apply simp_all
+apply(erule alpha.cases)
+apply simp_all
+apply(erule alpha.cases)
+apply simp_all
+apply(erule alpha.cases)
+apply simp_all
+apply(erule alpha.cases)
+apply simp_all
+apply(erule alpha.cases)
+apply simp_all
+done
+
+lemma lam_distinct[simp]:
+  shows "Var nam \<noteq> App lam1' lam2'"
+  and   "App lam1' lam2' \<noteq> Var nam"
+  and   "Var nam \<noteq> Lam nam' lam'"
+  and   "Lam nam' lam' \<noteq> Var nam"
+  and   "App lam1 lam2 \<noteq> Lam nam' lam'"
+  and   "Lam nam' lam' \<noteq> App lam1 lam2"
+apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
+done
+
+lemma var_supp1:
+  shows "(supp (Var a)) = (supp a)"
+  apply (simp add: supp_def)
+  done
+
+lemma var_supp:
+  shows "(supp (Var a)) = {a:::name}"
+  using var_supp1 by (simp add: supp_at_base)
+
+lemma app_supp:
+  shows "supp (App t1 t2) = (supp t1) \<union> (supp t2)"
+apply(simp only: permute_lam supp_def lam_inject)
+apply(simp add: Collect_imp_eq Collect_neg_eq)
+done
+
+(* needs thinking *)
+lemma lam_supp:
+  shows "supp (Lam x t) = ((supp t) - {atom x})"
+apply(simp add: supp_def)
+sorry
+
+
+instance lam :: fs
+apply(default)
+apply(induct_tac x rule: lam_induct)
+apply(simp add: var_supp)
+apply(simp add: app_supp)
+apply(simp add: lam_supp)
+done
+
+lemma fresh_lam:
+  "(atom a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> atom a \<sharp> t)"
+apply(simp add: fresh_def)
+apply(simp add: lam_supp)
+apply(auto)
+done
+
+lemma lam_induct_strong:
+  fixes a::"'a::fs"
+  assumes a1: "\<And>name b. P b (Var name)"
+  and     a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
+  and     a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
+  shows "P a lam"
+proof -
+  have "\<And>pi a. P a (pi \<bullet> lam)" 
+  proof (induct lam rule: lam_induct)
+    case (1 name pi)
+    show "P a (pi \<bullet> Var name)"
+      apply (simp)
+      apply (rule a1)
+      done
+  next
+    case (2 lam1 lam2 pi)
+    have b1: "\<And>pi a. P a (pi \<bullet> lam1)" by fact
+    have b2: "\<And>pi a. P a (pi \<bullet> lam2)" by fact
+    show "P a (pi \<bullet> App lam1 lam2)"
+      apply (simp)
+      apply (rule a2)
+      apply (rule b1)
+      apply (rule b2)
+      done
+  next
+    case (3 name lam pi a)
+    have b: "\<And>pi a. P a (pi \<bullet> lam)" by fact
+    obtain c::name where fr: "atom c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
+      apply(rule obtain_atom)
+      apply(auto)
+      sorry
+    from b fr have p: "P a (Lam c (((c \<leftrightarrow> (pi \<bullet> name)) + pi)\<bullet>lam))" 
+      apply -
+      apply(rule a3)
+      apply(blast)
+      apply(simp add: fresh_Pair)
+      done
+    have eq: "(atom c \<rightleftharpoons> atom (pi\<bullet>name)) \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
+      apply(rule swap_fresh_fresh)
+      using fr
+      apply(simp add: fresh_lam fresh_Pair)
+      apply(simp add: fresh_lam fresh_Pair)
+      done
+    show "P a (pi \<bullet> Lam name lam)" 
+      apply (simp)
+      apply(subst eq[symmetric])
+      using p
+      apply(simp only: permute_lam)
+      apply(simp add: flip_def)
+      done
+  qed
+  then have "P a (0 \<bullet> lam)" by blast
+  then show "P a lam" by simp 
+qed
+
+
+lemma var_fresh:
+  fixes a::"name"
+  shows "(atom a \<sharp> (Var b)) = (atom a \<sharp> b)"
+  apply(simp add: fresh_def)
+  apply(simp add: var_supp1)
+  done
+
+
+
+end
+