--- a/Nominal/NewParser.thy Thu Jun 24 19:32:33 2010 +0100
+++ b/Nominal/NewParser.thy Thu Jun 24 21:35:11 2010 +0100
@@ -366,7 +366,8 @@
if get_STEPS lthy3b > 4
then define_raw_alpha descr sorts raw_bn_info raw_bclauses raw_fvs lthy3b
else raise TEST lthy3b
-
+ val alpha_tys = map (domain_type o fastype_of) alpha_trms
+
(* definition of alpha-distinct lemmas *)
val _ = warning "Distinct theorems";
val (alpha_distincts, alpha_bn_distincts) =
@@ -396,11 +397,11 @@
(Local_Theory.restore lthy_tmp)
else raise TEST lthy4
- val lthy_tmp' = snd (Local_Theory.note ((Binding.empty, [add_eqvt]), fv_eqvt) lthy_tmp)
+ val lthy5 = snd (Local_Theory.note ((Binding.empty, [add_eqvt]), fv_eqvt) lthy_tmp)
- val (alpha_eqvt, lthy_tmp'') =
+ val (alpha_eqvt, lthy6) =
if get_STEPS lthy > 8
- then Nominal_Eqvt.equivariance true (alpha_trms @ alpha_bn_trms) alpha_induct alpha_intros lthy_tmp'
+ then Nominal_Eqvt.equivariance true (alpha_trms @ alpha_bn_trms) alpha_induct alpha_intros lthy5
else raise TEST lthy4
(* proving alpha equivalence *)
@@ -408,51 +409,56 @@
val alpha_refl_thms =
if get_STEPS lthy > 9
- then raw_prove_refl alpha_trms alpha_bn_trms alpha_intros induct_thm lthy_tmp''
- else raise TEST lthy4
+ then raw_prove_refl alpha_trms alpha_bn_trms alpha_intros induct_thm lthy6
+ else raise TEST lthy6
val alpha_sym_thms =
if get_STEPS lthy > 10
- then raw_prove_sym (alpha_trms @ alpha_bn_trms) alpha_intros alpha_induct lthy_tmp''
- else raise TEST lthy4
+ then raw_prove_sym (alpha_trms @ alpha_bn_trms) alpha_intros alpha_induct lthy6
+ else raise TEST lthy6
val alpha_trans_thms =
if get_STEPS lthy > 11
then raw_prove_trans (alpha_trms @ alpha_bn_trms) (distinct_thms @ inject_thms)
- alpha_intros alpha_induct alpha_cases lthy_tmp''
- else raise TEST lthy4
+ alpha_intros alpha_induct alpha_cases lthy6
+ else raise TEST lthy6
val alpha_equivp_thms =
if get_STEPS lthy > 12
- then raw_prove_equivp alpha_trms alpha_refl_thms alpha_sym_thms alpha_trans_thms lthy_tmp''
- else raise TEST lthy4
+ then raw_prove_equivp alpha_trms alpha_refl_thms alpha_sym_thms alpha_trans_thms lthy6
+ else raise TEST lthy6
(* proving alpha implies alpha_bn *)
val _ = warning "Proving alpha implies bn"
val alpha_bn_imp_thms =
if get_STEPS lthy > 13
- then raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct lthy_tmp''
- else raise TEST lthy4
+ then raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct lthy6
+ else raise TEST lthy6
- val _ = tracing ("alphas " ^ commas (map (Syntax.string_of_term lthy4) alpha_trms))
- val _ = tracing ("alpha_bns " ^ commas (map (Syntax.string_of_term lthy4) alpha_bn_trms))
- val _ = tracing ("alpha_refl\n" ^
- cat_lines (map (Syntax.string_of_term lthy4 o prop_of) alpha_refl_thms))
- val _ = tracing ("alpha_bn_imp\n" ^
- cat_lines (map (Syntax.string_of_term lthy4 o prop_of) alpha_bn_imp_thms))
- val _ = tracing ("alpha_equivp\n" ^
- cat_lines (map (Syntax.string_of_term lthy4 o prop_of) alpha_equivp_thms))
-
- (* old stuff *)
- val _ =
- if get_STEPS lthy > 14
- then true else raise TEST lthy4
-
- val qty_binds = map (fn (_, b, _, _) => b) dts;
+ (* defining the quotient type *)
+ val _ = warning "Declaring the quotient types"
+ val qty_descr = map (fn (vs, bind, mx, _) => (vs, bind, mx)) dts
+ val qty_binds = map (fn (_, bind, _, _) => bind) dts
val qty_names = map Name.of_binding qty_binds;
val qty_full_names = map (Long_Name.qualify thy_name) qty_names
- val (qtys, lthy7) = define_quotient_types qty_binds all_tys alpha_trms alpha_equivp_thms lthy4;
+
+ val qty_args' = map2 (fn ty => fn trm => (ty, trm, false)) alpha_tys alpha_trms
+ val qty_args = (qty_descr ~~ qty_args') ~~ alpha_equivp_thms
+
+ val (qty_infos, lthy7) =
+ if get_STEPS lthy > 14
+ then fold_map Quotient_Type.add_quotient_type qty_args lthy6
+ else raise TEST lthy6
+
+ val qtys = map #qtyp qty_infos
+
+ val _ =
+ if get_STEPS lthy > 15
+ then true else raise TEST lthy7
+
+ (* old stuff *)
+
val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts));
val raw_consts =
flat (map (fn (i, (_, _, l)) =>