--- a/Nominal/Ex/NBE.thy Sat Dec 17 17:10:11 2011 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,546 +0,0 @@
-theory Lambda
-imports
- "../Nominal2"
-begin
-
-
-atom_decl name
-
-nominal_datatype lam =
- Var "name"
-| App "lam" "lam"
-| Lam x::"name" l::"lam" binds x in l ("Lam [_]. _" [100, 100] 100)
-
-nominal_datatype sem =
- L e::"env" x::"name" l::"lam" binds x "bn e" in l
-| N "neu"
-and neu =
- V "name"
-| A "neu" "sem"
-and env =
- ENil
-| ECons "env" "name" "sem"
-binder
- bn
-where
- "bn ENil = []"
-| "bn (ECons env x v) = (atom x) # (bn env)"
-
-thm sem_neu_env.supp
-
-lemma [simp]:
- shows "finite (fv_bn env)"
-apply(induct env rule: sem_neu_env.inducts(3))
-apply(rule TrueI)+
-apply(auto simp add: sem_neu_env.supp finite_supp)
-done
-
-lemma test1:
- shows "supp p \<sharp>* (fv_bn env) \<Longrightarrow> (p \<bullet> env) = permute_bn p env"
-apply(induct env rule: sem_neu_env.inducts(3))
-apply(rule TrueI)+
-apply(auto simp add: sem_neu_env.perm_bn_simps sem_neu_env.supp)
-apply(drule meta_mp)
-apply(drule fresh_star_supp_conv)
-apply(subst (asm) supp_finite_atom_set)
-apply(simp add: finite_supp)
-apply(simp add: fresh_star_Un)
-apply(rule fresh_star_supp_conv)
-apply(subst supp_finite_atom_set)
-apply(simp)
-apply(simp)
-apply(simp)
-apply(rule perm_supp_eq)
-apply(drule fresh_star_supp_conv)
-apply(subst (asm) supp_finite_atom_set)
-apply(simp add: finite_supp)
-apply(simp add: fresh_star_Un)
-apply(rule fresh_star_supp_conv)
-apply(simp)
-done
-
-thm alpha_sem_raw_alpha_neu_raw_alpha_env_raw_alpha_bn_raw.inducts(4)[no_vars]
-
-lemma alpha_bn_inducts_raw[consumes 1]:
- "\<lbrakk>alpha_bn_raw x7 x8;
- P4 ENil_raw ENil_raw;
- \<And>env_raw env_rawa sem_raw sem_rawa name namea.
- \<lbrakk>alpha_bn_raw env_raw env_rawa; P4 env_raw env_rawa; alpha_sem_raw sem_raw sem_rawa\<rbrakk>
- \<Longrightarrow> P4 (ECons_raw env_raw name sem_raw) (ECons_raw env_rawa namea sem_rawa)\<rbrakk>
-\<Longrightarrow> P4 x7 x8"
-apply(induct rule: alpha_sem_raw_alpha_neu_raw_alpha_env_raw_alpha_bn_raw.inducts(4))
-apply(rule TrueI)+
-apply(auto)
-done
-
-lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted]
-
-lemma test2:
- shows "alpha_bn env1 env2 \<Longrightarrow> p \<bullet> (bn env1) = q \<bullet> (bn env2) \<Longrightarrow> permute_bn p env1 = permute_bn q env2"
-apply(induct rule: alpha_bn_inducts)
-apply(auto simp add: sem_neu_env.perm_bn_simps sem_neu_env.bn_defs)
-apply(simp add: atom_eqvt)
-done
-
-lemma fresh_star_Union:
- assumes "as \<subseteq> bs" "bs \<sharp>* x"
- shows "as \<sharp>* x"
-using assms by (auto simp add: fresh_star_def)
-
-
-nominal_primrec (invariant "\<lambda>x y. case x of Inl (x1, y1) \<Rightarrow>
- supp y \<subseteq> (supp y1 - set (bn x1)) \<union> (fv_bn x1) | Inr (x2, y2) \<Rightarrow> supp y \<subseteq> supp x2 \<union> supp y2")
- evals :: "env \<Rightarrow> lam \<Rightarrow> sem" and
- evals_aux :: "sem \<Rightarrow> sem \<Rightarrow> sem"
-where
- "evals ENil (Var x) = N (V x)"
-| "evals (ECons tail y v) (Var x) = (if x = y then v else evals tail (Var x))"
-| "atom x \<sharp> env \<Longrightarrow> evals env (Lam [x]. t) = L env x t"
-| "evals env (App t1 t2) = evals_aux (evals env t1) (evals env t2)"
-| "set (atom x # bn env) \<sharp>* (fv_bn env, t') \<Longrightarrow> evals_aux (L env x t) t' = evals (ECons env x t') t"
-| "evals_aux (N n) t' = N (A n t')"
-apply(simp add: eqvt_def evals_evals_aux_graph_def)
-apply(perm_simp)
-apply(simp)
-apply(erule evals_evals_aux_graph.induct)
-apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
-apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
-apply(rule conjI)
-apply(rule impI)
-apply(blast)
-apply(rule impI)
-apply(simp add: supp_at_base)
-apply(blast)
-apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
-apply(blast)
-apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
-apply(blast)
-apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
-apply(blast)
-apply(simp add: sem_neu_env.supp lam.supp sem_neu_env.bn_defs)
---"completeness"
-apply(case_tac x)
-apply(simp)
-apply(case_tac a)
-apply(simp)
-apply(case_tac aa rule: sem_neu_env.exhaust(3))
-apply(simp add: sem_neu_env.fresh)
-apply(case_tac b rule: lam.exhaust)
-apply(metis)+
-apply(case_tac aa rule: sem_neu_env.exhaust(3))
-apply(rule_tac y="b" and c="env" in lam.strong_exhaust)
-apply(metis)+
-apply(simp add: fresh_star_def)
-apply(simp)
-apply(rule_tac y="b" and c="ECons env name sem" in lam.strong_exhaust)
-apply(metis)+
-apply(simp add: fresh_star_def)
-apply(simp)
-apply(case_tac b)
-apply(simp)
-apply(rule_tac y="a" and c="(a, ba)" in sem_neu_env.strong_exhaust(1))
-apply(simp)
-apply(rotate_tac 4)
-apply(drule_tac x="name" in meta_spec)
-apply(drule_tac x="env" in meta_spec)
-apply(drule_tac x="ba" in meta_spec)
-apply(drule_tac x="lam" in meta_spec)
-apply(simp add: sem_neu_env.alpha_refl)
-apply(rotate_tac 9)
-apply(drule_tac meta_mp)
-apply(simp (no_asm_use) add: fresh_star_def sem_neu_env.fresh fresh_Pair)
-apply(simp)
-apply(subst fresh_finite_atom_set)
-defer
-apply(simp)
-apply(subst fresh_finite_atom_set)
-defer
-apply(simp)
-apply(metis)+
---"compatibility"
-apply(all_trivials)
-apply(simp)
-apply(simp)
-defer
-apply(simp)
-apply(simp)
-apply (simp add: meta_eq_to_obj_eq[OF evals_def, symmetric, unfolded fun_eq_iff])
-apply (subgoal_tac "eqvt_at (\<lambda>(a, b). evals a b) (ECons env x t'a, t)")
-apply (subgoal_tac "eqvt_at (\<lambda>(a, b). evals a b) (ECons enva xa t'a, ta)")
-apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons env x t'a, t))")
-apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons enva xa t'a, ta))")
-apply(erule conjE)+
-defer
-apply (simp_all add: eqvt_at_def evals_def)[3]
-defer
-defer
-apply(simp add: sem_neu_env.alpha_refl)
-apply(erule conjE)+
-apply(erule_tac c="(env, enva)" in Abs_lst1_fcb2)
-apply(simp add: Abs_fresh_iff)
-apply(simp add: fresh_star_def)
-apply(perm_simp)
-apply(simp add: fresh_star_Pair perm_supp_eq)
-apply(perm_simp)
-apply(simp add: fresh_star_Pair perm_supp_eq)
-apply(simp add: sem_neu_env.bn_defs sem_neu_env.supp)
-using at_set_avoiding3
-apply -
-apply(drule_tac x="set (atom x # bn env)" in meta_spec)
-apply(drule_tac x="(fv_bn env, fv_bn enva, env, enva, x, xa, t, ta, t'a)" in meta_spec)
-apply(drule_tac x="[atom x # bn env]lst. t" in meta_spec)
-apply(simp (no_asm_use) add: finite_supp Abs_fresh_star_iff)
-apply(drule meta_mp)
-apply(simp add: supp_Pair finite_supp supp_finite_atom_set)
-apply(drule meta_mp)
-apply(simp add: fresh_star_def)
-apply(erule exE)
-apply(erule conjE)+
-apply(rule trans)
-apply(rule sym)
-apply(rule_tac p="p" in perm_supp_eq)
-apply(simp)
-apply(perm_simp)
-apply(simp add: fresh_star_Un fresh_star_insert)
-apply(rule conjI)
-apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
-apply(simp add: fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(blast)
-apply(rule conjI)
-apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
-apply(simp add: fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(blast)
-apply(rule conjI)
-apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
-apply(simp add: fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(blast)
-apply(simp (no_asm_use) add: fresh_star_def fresh_Pair)
-apply(simp add: fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(blast)
-apply(simp add: eqvt_at_def perm_supp_eq)
-apply(subst (3) perm_supp_eq)
-apply(simp)
-apply(simp add: fresh_star_def fresh_Pair)
-apply(auto)[1]
-apply(rotate_tac 6)
-apply(drule sym)
-apply(simp)
-apply(rotate_tac 11)
-apply(drule trans)
-apply(rule sym)
-apply(rule_tac p="p" in supp_perm_eq)
-apply(assumption)
-apply(rotate_tac 11)
-apply(rule sym)
-apply(simp add: atom_eqvt)
-apply(simp (no_asm_use) add: Abs_eq_iff2 alphas)
-apply(erule conjE | erule exE)+
-apply(rule trans)
-apply(rule sym)
-apply(rule_tac p="pa" in perm_supp_eq)
-apply(erule fresh_star_Union)
-apply(simp (no_asm_use) add: fresh_star_insert fresh_star_Un)
-apply(rule conjI)
-apply(perm_simp)
-apply(simp add: fresh_star_insert fresh_star_Un)
-apply(simp add: fresh_Pair)
-apply(simp add: fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(blast)
-apply(rule conjI)
-apply(perm_simp)
-apply(simp add: fresh_star_insert fresh_star_Un)
-apply(simp add: fresh_Pair)
-apply(simp add: fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(blast)
-apply(rule conjI)
-apply(perm_simp)
-defer
-apply(perm_simp)
-apply(simp add: fresh_star_insert fresh_star_Un)
-apply(simp add: fresh_star_Pair)
-apply(simp add: fresh_star_def fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(blast)
-apply(simp)
-apply(perm_simp)
-apply(subst (3) perm_supp_eq)
-apply(erule fresh_star_Union)
-apply(simp add: fresh_star_insert fresh_star_Un)
-apply(simp add: fresh_star_def fresh_Pair)
-apply(subgoal_tac "pa \<bullet> enva = p \<bullet> env")
-apply(simp)
-defer
-apply(simp (no_asm_use) add: fresh_star_insert fresh_star_Un)
-apply(simp (no_asm_use) add: fresh_star_def)
-apply(rule ballI)
-apply(subgoal_tac "a \<notin> supp ta - insert (atom xa) (set (bn enva)) \<union> (fv_bn enva \<union> supp t'a)")
-apply(simp only: fresh_def)
-apply(blast)
-apply(simp (no_asm_use))
-apply(rule conjI)
-apply(blast)
-apply(simp add: fresh_Pair)
-apply(simp add: fresh_star_def fresh_def)
-apply(simp add: supp_finite_atom_set)
-apply(subst test1)
-apply(erule fresh_star_Union)
-apply(simp add: fresh_star_insert fresh_star_Un)
-apply(simp add: fresh_star_def fresh_Pair)
-apply(subst test1)
-apply(simp)
-apply(simp add: fresh_star_insert fresh_star_Un)
-apply(simp add: fresh_star_def fresh_Pair)
-apply(rule sym)
-apply(erule test2)
-apply(perm_simp)
-apply(simp)
-done
-
-
-
-
-text {* can probably not proved by a trivial size argument *}
-termination (* apply(lexicographic_order) *)
-sorry
-
-lemma [eqvt]:
- shows "(p \<bullet> evals env t) = evals (p \<bullet> env) (p \<bullet> t)"
- and "(p \<bullet> evals_aux v s) = evals_aux (p \<bullet> v) (p \<bullet> s)"
-sorry
-
-(* fixme: should be a provided lemma *)
-lemma fv_bn_finite:
- shows "finite (fv_bn env)"
-apply(induct env rule: sem_neu_env.inducts(3))
-apply(auto simp add: sem_neu_env.supp finite_supp)
-done
-
-lemma test:
- fixes env::"env"
- shows "supp (evals env t) \<subseteq> (supp t - set (bn env)) \<union> (fv_bn env)"
- and "supp (evals_aux s v) \<subseteq> (supp s) \<union> (supp v)"
-apply(induct env t and s v rule: evals_evals_aux.induct)
-apply(simp add: sem_neu_env.supp lam.supp supp_Nil sem_neu_env.bn_defs)
-apply(simp add: sem_neu_env.supp lam.supp supp_Nil supp_Cons sem_neu_env.bn_defs)
-apply(rule conjI)
-apply(auto)[1]
-apply(rule impI)
-apply(simp)
-apply(simp add: supp_at_base)
-apply(blast)
-apply(simp)
-apply(subst sem_neu_env.supp)
-apply(simp add: sem_neu_env.supp lam.supp)
-apply(auto)[1]
-apply(simp add: lam.supp sem_neu_env.supp)
-apply(blast)
-apply(simp add: sem_neu_env.supp sem_neu_env.bn_defs)
-apply(blast)
-apply(simp add: sem_neu_env.supp)
-done
-
-
-nominal_primrec
- reify :: "sem \<Rightarrow> lam" and
- reifyn :: "neu \<Rightarrow> lam"
-where
- "atom x \<sharp> (env, y, t) \<Longrightarrow> reify (L env y t) = Lam [x]. (reify (evals (ECons env y (N (V x))) t))"
-| "reify (N n) = reifyn n"
-| "reifyn (V x) = Var x"
-| "reifyn (A n d) = App (reifyn n) (reify d)"
-apply(subgoal_tac "\<And>p x y. reify_reifyn_graph x y \<Longrightarrow> reify_reifyn_graph (p \<bullet> x) (p \<bullet> y)")
-apply(simp add: eqvt_def)
-apply(simp add: permute_fun_def)
-apply(rule allI)
-apply(rule ext)
-apply(rule ext)
-apply(rule iffI)
-apply(drule_tac x="p" in meta_spec)
-apply(drule_tac x="- p \<bullet> x" in meta_spec)
-apply(drule_tac x="- p \<bullet> xa" in meta_spec)
-apply(simp add: permute_bool_def)
-apply(simp add: permute_bool_def)
-apply(erule reify_reifyn_graph.induct)
-apply(perm_simp)
-apply(rule reify_reifyn_graph.intros)
-apply(rule_tac p="-p" in permute_boolE)
-apply(perm_simp add: permute_minus_cancel)
-apply(simp)
-apply(simp)
-apply(perm_simp)
-apply(rule reify_reifyn_graph.intros)
-apply(simp)
-apply(perm_simp)
-apply(rule reify_reifyn_graph.intros)
-apply(perm_simp)
-apply(rule reify_reifyn_graph.intros)
-apply(simp)
-apply(simp)
-apply(rule TrueI)
---"completeness"
-apply(case_tac x)
-apply(simp)
-apply(case_tac a rule: sem_neu_env.exhaust(1))
-apply(subgoal_tac "\<exists>x::name. atom x \<sharp> (env, name, lam)")
-apply(metis)
-apply(rule obtain_fresh)
-apply(blast)
-apply(blast)
-apply(case_tac b rule: sem_neu_env.exhaust(2))
-apply(simp)
-apply(simp)
-apply(metis)
---"compatibility"
-apply(all_trivials)
-defer
-apply(simp)
-apply(simp)
-apply(simp)
-apply(erule conjE)
-apply (simp add: meta_eq_to_obj_eq[OF reify_def, symmetric, unfolded fun_eq_iff])
-apply (subgoal_tac "eqvt_at (\<lambda>t. reify t) (evals (ECons env y (N (V x))) t)")
-apply (subgoal_tac "eqvt_at (\<lambda>t. reify t) (evals (ECons enva ya (N (V xa))) ta)")
-apply (thin_tac "eqvt_at reify_reifyn_sumC (Inl (evals (ECons env y (N (V x))) t))")
-apply (thin_tac "eqvt_at reify_reifyn_sumC (Inl (evals (ECons enva ya (N (V xa))) ta))")
-defer
-apply (simp_all add: eqvt_at_def reify_def)[2]
-apply(subgoal_tac "\<exists>c::name. atom c \<sharp> (x, xa, env, enva, y, ya, t, ta)")
-prefer 2
-apply(rule obtain_fresh)
-apply(blast)
-apply(erule exE)
-apply(rule trans)
-apply(rule sym)
-apply(rule_tac a="x" and b="c" in flip_fresh_fresh)
-apply(simp add: Abs_fresh_iff)
-apply(simp add: Abs_fresh_iff fresh_Pair)
-apply(auto)[1]
-apply(rule fresh_eqvt_at)
-back
-apply(assumption)
-apply(simp add: finite_supp)
-apply(rule_tac S="supp (env, y, x, t)" in supports_fresh)
-apply(simp add: supports_def fresh_def[symmetric])
-apply(perm_simp)
-apply(simp add: swap_fresh_fresh fresh_Pair)
-apply(simp add: finite_supp)
-apply(simp add: fresh_def[symmetric])
-apply(simp add: eqvt_at_def)
-apply(simp add: eqvt_at_def[symmetric])
-apply(perm_simp)
-apply(simp add: flip_fresh_fresh)
-apply(rule sym)
-apply(rule trans)
-apply(rule sym)
-apply(rule_tac a="xa" and b="c" in flip_fresh_fresh)
-apply(simp add: Abs_fresh_iff)
-apply(simp add: Abs_fresh_iff fresh_Pair)
-apply(auto)[1]
-apply(rule fresh_eqvt_at)
-back
-apply(assumption)
-apply(simp add: finite_supp)
-apply(rule_tac S="supp (enva, ya, xa, ta)" in supports_fresh)
-apply(simp add: supports_def fresh_def[symmetric])
-apply(perm_simp)
-apply(simp add: swap_fresh_fresh fresh_Pair)
-apply(simp add: finite_supp)
-apply(simp add: fresh_def[symmetric])
-apply(simp add: eqvt_at_def)
-apply(simp add: eqvt_at_def[symmetric])
-apply(perm_simp)
-apply(simp add: flip_fresh_fresh)
-apply(simp (no_asm) add: Abs1_eq_iff)
-(* HERE *)
-thm at_set_avoiding3
-using at_set_avoiding3
-apply -
-apply(drule_tac x="set (atom y # bn env)" in meta_spec)
-apply(drule_tac x="(env, enva)" in meta_spec)
-apply(drule_tac x="[atom y # bn env]lst. t" in meta_spec)
-apply(simp (no_asm_use) add: finite_supp)
-apply(drule meta_mp)
-apply(rule Abs_fresh_star)
-apply(auto)[1]
-apply(erule exE)
-apply(erule conjE)+
-apply(drule_tac q="(x \<leftrightarrow> c)" in eqvt_at_perm)
-apply(perm_simp)
-apply(simp add: flip_fresh_fresh fresh_Pair)
-apply(drule_tac q="(xa \<leftrightarrow> c)" in eqvt_at_perm)
-apply(perm_simp)
-apply(simp add: flip_fresh_fresh fresh_Pair)
-apply(drule sym)
-(* HERE *)
-apply(rotate_tac 9)
-apply(drule sym)
-apply(rotate_tac 9)
-apply(drule trans)
-apply(rule sym)
-apply(rule_tac p="p" in supp_perm_eq)
-apply(assumption)
-apply(simp)
-apply(perm_simp)
-apply(simp (no_asm_use) add: Abs_eq_iff2 alphas)
-apply(erule conjE | erule exE)+
-apply(clarify)
-apply(rule trans)
-apply(rule sym)
-apply(rule_tac p="pa" in perm_supp_eq)
-defer
-apply(rule sym)
-apply(rule trans)
-apply(rule sym)
-apply(rule_tac p="p" in perm_supp_eq)
-defer
-apply(simp add: atom_eqvt)
-apply(drule_tac q="(x \<leftrightarrow> c)" in eqvt_at_perm)
-apply(perm_simp)
-apply(simp add: flip_fresh_fresh fresh_Pair)
-
-apply(rule sym)
-apply(erule_tac Abs_lst1_fcb2')
-apply(rule fresh_eqvt_at)
-back
-apply(drule_tac q="(c \<leftrightarrow> x)" in eqvt_at_perm)
-apply(perm_simp)
-apply(simp add: flip_fresh_fresh)
-apply(simp add: finite_supp)
-apply(rule supports_fresh)
-apply(rule_tac S="supp (enva, ya, xa, ta)" in supports_fresh)
-apply(simp add: supports_def fresh_def[symmetric])
-apply(perm_simp)
-apply(simp add: swap_fresh_fresh fresh_Pair)
-apply(simp add: finite_supp)
-apply(simp add: fresh_def[symmetric])
-apply(simp add: eqvt_at_def)
-apply(simp add: eqvt_at_def[symmetric])
-apply(perm_simp)
-apply(rule fresh_eqvt_at)
-back
-apply(drule_tac q="(c \<leftrightarrow> x)" in eqvt_at_perm)
-apply(perm_simp)
-apply(simp add: flip_fresh_fresh)
-apply(assumption)
-apply(simp add: finite_supp)
-sorry
-
-termination sorry
-
-definition
- eval :: "lam \<Rightarrow> sem"
-where
- "eval t = evals ENil t"
-
-definition
- normalize :: "lam \<Rightarrow> lam"
-where
- "normalize t = reify (eval t)"
-
-end
\ No newline at end of file