--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/Nominal/Rsp.thy Tue Feb 23 16:12:30 2010 +0100
@@ -0,0 +1,88 @@
+theory Rsp
+imports Abs
+begin
+
+ML {*
+fun define_quotient_type args tac ctxt =
+let
+ val mthd = Method.SIMPLE_METHOD tac
+ val mthdt = Method.Basic (fn _ => mthd)
+ val bymt = Proof.global_terminal_proof (mthdt, NONE)
+in
+ bymt (Quotient_Type.quotient_type args ctxt)
+end
+*}
+
+ML {*
+fun const_rsp const lthy =
+let
+ val nty = fastype_of (Quotient_Term.quotient_lift_const ("", const) lthy)
+ val rel = Quotient_Term.equiv_relation_chk lthy (fastype_of const, nty);
+in
+ HOLogic.mk_Trueprop (rel $ const $ const)
+end
+*}
+
+ML {*
+fun remove_alls trm =
+let
+ val vars = strip_all_vars trm
+ val fs = rev (map Free vars)
+in
+ ((map fst vars), subst_bounds (fs, (strip_all_body trm)))
+end
+*}
+
+ML {*
+fun get_rsp_goal thy trm =
+let
+ val goalstate = Goal.init (cterm_of thy trm);
+ val tac = REPEAT o rtac @{thm fun_rel_id};
+in
+ case (SINGLE (tac 1) goalstate) of
+ NONE => error "rsp_goal failed"
+ | SOME th => remove_alls (term_of (cprem_of th 1))
+end
+*}
+
+ML {*
+fun prove_const_rsp bind const tac ctxt =
+let
+ val rsp_goal = const_rsp const ctxt
+ val thy = ProofContext.theory_of ctxt
+ val (fixed, user_goal) = get_rsp_goal thy rsp_goal
+ val user_thm = Goal.prove ctxt fixed [] user_goal tac
+ fun tac _ = (REPEAT o rtac @{thm fun_rel_id} THEN' rtac user_thm THEN_ALL_NEW atac) 1
+ val rsp_thm = Goal.prove ctxt [] [] rsp_goal tac
+in
+ ctxt
+|> snd o Local_Theory.note
+ ((Binding.empty, [Attrib.internal (fn _ => Quotient_Info.rsp_rules_add)]), [rsp_thm])
+|> snd o Local_Theory.note ((bind, []), [user_thm])
+end
+*}
+
+ML {*
+fun fv_rsp_tac induct fv_simps =
+ eresolve_tac induct THEN_ALL_NEW
+ asm_full_simp_tac (HOL_ss addsimps (@{thm alpha_gen} :: fv_simps))
+*}
+
+ML {*
+fun constr_rsp_tac inj rsp equivps =
+let
+ val reflps = map (fn x => @{thm equivp_reflp} OF [x]) equivps
+in
+ REPEAT o rtac @{thm fun_rel_id} THEN'
+ simp_tac (HOL_ss addsimps inj) THEN'
+ (TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)) THEN_ALL_NEW
+ (asm_simp_tac HOL_ss THEN_ALL_NEW (
+ rtac @{thm exI[of _ "0 :: perm"]} THEN'
+ asm_full_simp_tac (HOL_ss addsimps (rsp @ reflps @
+ @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv}))
+ ))
+end
+*}
+
+
+end