--- a/Paper/Paper.thy Tue Mar 30 09:15:40 2010 +0200
+++ b/Paper/Paper.thy Tue Mar 30 10:36:05 2010 +0200
@@ -1142,7 +1142,6 @@
\marginpar{\small We really have @{text "bn_raw"}, @{text "fv_bn_raw"}. Should we mention this?}
-
\noindent Next, for each binding function @{text "bn"} we define a
free variable function @{text "fv_bn"}. The basic idea behind this
function is to compute all the free atoms under this binding
@@ -1154,6 +1153,8 @@
we define @{text "fv_bn"} to be the union of the values calculated
for @{text "x\<^isub>j"} as follows:
+ \marginpar{raw for being defined}
+
\begin{center}
\begin{tabular}{cp{7cm}}
$\bullet$ & @{term "{}"} provided @{term "x\<^isub>j"} occurs in @{text "rhs"} and is an atom\\
@@ -1162,9 +1163,9 @@
$\bullet$ & @{text "(atoms x\<^isub>j) - bnds"} provided @{term "x\<^isub>j"} is a set of atoms\\
$\bullet$ & @{text "(atoml x\<^isub>j) - bnds"} provided @{term "x\<^isub>j"} is a list of atoms\\
$\bullet$ & @{text "(fv_ty x\<^isub>j) - bnds"} provided @{term "x\<^isub>j"} is a nominal datatype
- with a free variable function @{text "fv_ty"}. This includes the currently defined
- types, where we use an appropriate @{term "fv_ty\<^isub>i"} function.\\
- $\bullet$ & @{term "{}"} otherwise
+ with a free variable function @{text "fv_ty"}. This includes the types being
+ defined, where we use an appropriate @{term "fv_ty\<^isub>i"} function.\\
+ $\bullet$ & @{term "{}"} otherwise
\end{tabular}
\end{center}
@@ -1182,7 +1183,31 @@
@{text "\<approx>bn\<^isub>1 :: ty\<^isub>i\<^isub>1 \<Rightarrow> ty\<^isub>i\<^isub>1 \<Rightarrow> bool \<dots> \<approx>bn\<^isub>n :: ty\<^isub>i\<^isub>m \<Rightarrow> ty\<^isub>i\<^isub>m \<Rightarrow> bool"}
\end{center}
+ TODO existance of permutations.
+ Given a term-constructor @{text "C ty\<^isub>1 \<dots> ty\<^isub>n"}, of a type @{text ty}, two instances
+ of this constructor are alpha-equivalent @{text "C x\<^isub>1 \<dots> x\<^isub>n \<approx> C y\<^isub>1 \<dots> y\<^isub>n"} if
+ the conjunction of equivalences for each argument pair @{text "x\<^isub>j"}, @{text "y\<^isub>j"} holds.
+ For an argument pair @{text "x\<^isub>j"}, @{text "y\<^isub>j"} this holds if:
+
+ \begin{center}
+ \begin{tabular}{cp{7cm}}
+ $\bullet$ & @{text "x\<^isub>j"} is a shallow binder\\
+ $\bullet$ & @{text "x\<^isub>j \<approx>bn\<^isub>m y\<^isub>j"} provided @{text "x\<^isub>j"} is a deep non-recursive binder
+ with the auxiliary binding function @{text "bn\<^isub>m"}\\
+ $\bullet$ & @{text "(bn\<^isub>m x\<^isub>j, (x\<^isub>j, x)) \<approx>gen \<approx>s fvs pi (bn\<^isub>m y\<^isub>j, (y\<^isub>j, s)"}
+ provided @{text "x\<^isub>j"} is a deep recursive binder with the auxiliary binding
+ function @{text "bn\<^isub>m"}, ...\\
+ $\bullet$ & @{text "(x\<^isub>n, x\<^isub>j) \<approx>gen \<approx> fv_ty pi (y\<^isub>n, y\<^isub>j)"} provided @{text "x\<^isub>n"}
+ is bound in @{text "x\<^isub>j"} \\
+ $\bullet$ & @{text "x\<^isub>j"} has a deep recursive binding\\
+ $\bullet$ & @{text "(bn\<^isub>m x\<^isub>n, x\<^isub>j) \<approx>gen \<approx> fv_ty pi (bn\<^isub>m y\<^isub>n, y\<^isub>j)"} provided @{text "bn\<^isub>m x\<^isub>n"}
+ is bound non-recursively in @{text "x\<^isub>j"} \\
+ $\bullet$ & @{text "x\<^isub>j \<approx>\<^isub>j y\<^isub>j"} for a nominal datatype with no bindings (this includes
+ the types being defined, raw)\\
+ $\bullet$ & @{text "x\<^isub>j = y\<^isub>j"} otherwise\\
+ \end{tabular}
+ \end{center}
*}