--- a/Quot/QuotProd.thy Tue Jan 26 01:42:46 2010 +0100
+++ b/Quot/QuotProd.thy Tue Jan 26 10:53:44 2010 +0100
@@ -82,14 +82,23 @@
apply(simp add: Quotient_abs_rep[OF q2])
done
+lemma split_rsp[quot_respect]:
+ shows "((R1 ===> R2 ===> (op =)) ===> (prod_rel R1 R2) ===> (op =)) split split"
+ by auto
+
+lemma split_prs[quot_preserve]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ shows "(((Abs1 ---> Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> id) split) = split"
+ by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+
lemma prod_fun_id[id_simps]:
- shows "prod_fun id id \<equiv> id"
- by (rule eq_reflection) (simp add: prod_fun_def)
+ shows "prod_fun id id = id"
+ by (simp add: prod_fun_def)
lemma prod_rel_eq[id_simps]:
- shows "prod_rel (op =) (op =) \<equiv> (op =)"
- apply (rule eq_reflection)
- apply (simp add: expand_fun_eq)
- done
+ shows "prod_rel (op =) (op =) = (op =)"
+ by (simp add: expand_fun_eq)
+
end