--- a/Quot/QuotBase.thy Tue Jan 26 01:42:46 2010 +0100
+++ b/Quot/QuotBase.thy Tue Jan 26 10:53:44 2010 +0100
@@ -72,11 +72,9 @@
where
"r1 OOO r2 \<equiv> r1 OO r2 OO r1"
-lemma eq_comp_r: "op = OO R OO op = \<equiv> R"
- apply (rule eq_reflection)
- apply (rule ext)+
- apply auto
- done
+lemma eq_comp_r:
+ shows "((op =) OOO R) = R"
+ by (auto simp add: expand_fun_eq)
section {* Respects predicate *}
@@ -108,8 +106,8 @@
by (simp add: expand_fun_eq id_def)
lemma fun_rel_eq:
- shows "(op =) ===> (op =) \<equiv> (op =)"
- by (rule eq_reflection) (simp add: expand_fun_eq)
+ shows "((op =) ===> (op =)) = (op =)"
+ by (simp add: expand_fun_eq)
lemma fun_rel_id:
assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
@@ -396,10 +394,9 @@
lemma babs_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
- shows "(Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f)) \<equiv> f"
- apply(rule eq_reflection)
- apply(rule ext)
- apply simp
+ shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
+ apply (rule ext)
+ apply (simp)
apply (subgoal_tac "Rep1 x \<in> Respects R1")
apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
apply (simp add: in_respects Quotient_rel_rep[OF q1])