Tutorial/Tutorial5.thy
branchNominal2-Isabelle2013
changeset 3208 da575186d492
parent 3206 fb201e383f1b
child 3209 2fb0bc0dcbf1
--- a/Tutorial/Tutorial5.thy	Tue Feb 19 05:38:46 2013 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,218 +0,0 @@
-
-theory Tutorial5
-imports Tutorial4
-begin
-
-section {* Type-Preservation and Progress Lemma*}
-
-text {*
-  The point of this tutorial is to prove the
-  type-preservation and progress lemma. Since
-  we now know that \<Down>, \<longrightarrow>cbv* and the machine
-  correspond to each other, we only need to
-  prove this property for one of them. We chose
-  \<longrightarrow>cbv.
-
-  First we need to establish two elimination
-  properties and two auxiliary lemmas about contexts.
-*}
-
-
-lemma valid_elim:
-  assumes a: "valid ((x, T) # \<Gamma>)"
-  shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>"
-using a by (cases) (auto)
-
-lemma valid_insert:
-  assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
-  shows "valid (\<Delta> @ \<Gamma>)" 
-using a
-by (induct \<Delta>)
-   (auto simp add: fresh_append fresh_Cons dest!: valid_elim)
-
-lemma fresh_list: 
-  shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)"
-by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
-
-lemma context_unique:
-  assumes a1: "valid \<Gamma>"
-  and     a2: "(x, T) \<in> set \<Gamma>"
-  and     a3: "(x, U) \<in> set \<Gamma>"
-  shows "T = U" 
-using a1 a2 a3
-by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base)
-
-
-section {* EXERCISE 16 *}
-
-text {*
-  Next we want to show the type substitution lemma. Unfortunately,
-  we have to prove a slightly more general version of it, where
-  the variable being substituted occurs somewhere inside the 
-  context.
-*}
-
-lemma type_substitution_aux:
-  assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T"
-  and     b: "\<Gamma> \<turnstile> e' : T'"
-  shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T" 
-using a b 
-proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct)
-  case (t_Var y T x e' \<Delta>)
-  have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact
-  have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact 
-  have a3: "\<Gamma> \<turnstile> e' : T'" by fact
-  
-  from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
-  { assume eq: "x = y"
-    
-    have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" sorry
-  }
-  moreover
-  { assume ineq: "x \<noteq> y"
-    from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
-    then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto
-  }
-  ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast
-next
-  case (t_Lam y T1 t T2 x e' \<Delta>)
-  have a1: "atom y \<sharp> e'" by fact
-  have a2: "atom y \<sharp> \<Delta> @ [(x, T')] @ \<Gamma>" by fact
-  have a3: "\<Gamma> \<turnstile> e' : T'" by fact 
-  have ih: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> ((y, T1) # \<Delta>) @ \<Gamma> \<turnstile> t [x ::= e'] : T2" 
-    using t_Lam(6)[of "(y, T1) # \<Delta>"] by auto 
-  
-
-  show "\<Delta> @ \<Gamma> \<turnstile> (Lam [y]. t)[x ::= e'] : T1 \<rightarrow> T2" sorry
-next
-  case (t_App t1 T1 T2 t2 x e' \<Delta>)
-  have ih1: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t1 [x ::= e'] : T1 \<rightarrow> T2" using t_App(2) by auto 
-  have ih2: "\<Gamma> \<turnstile> e' : T' \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> t2 [x ::= e'] : T1" using t_App(4) by auto 
-  have a: "\<Gamma> \<turnstile> e' : T'" by fact
-
-  show "\<Delta> @ \<Gamma> \<turnstile> App t1 t2 [x ::= e'] : T2" sorry
-qed 
-
-text {*
-  From this we can derive the usual version of the substitution
-  lemma.
-*}
-
-corollary type_substitution:
-  assumes a: "(x, T') # \<Gamma> \<turnstile> e : T"
-  and     b: "\<Gamma> \<turnstile> e' : T'"
-  shows "\<Gamma> \<turnstile> e[x ::= e'] : T"
-using a b type_substitution_aux[of "[]"]
-by auto
-
-
-section {* Type Preservation *}
-
-text {*
-  Finally we are in a position to establish the type preservation
-  property. We just need the following two inversion rules for
-  particualr typing instances.
-*}
-
-lemma t_App_elim:
-  assumes a: "\<Gamma> \<turnstile> App t1 t2 : T"
-  obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'"
-using a
-by (cases) (auto simp add: lam.eq_iff lam.distinct)
-
-text {* we have not yet generated strong elimination rules *}
-lemma t_Lam_elim:
-  assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T" 
-  and     fc: "atom x \<sharp> \<Gamma>" 
-  obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2"
-using ty fc
-apply(cases)
-using [[simproc del: alpha_lst]]
-apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff)
-apply(auto simp add: Abs1_eq_iff)
-apply(rotate_tac 3)
-apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI)
-apply(perm_simp)
-apply(auto simp add: flip_fresh_fresh ty_fresh)
-done
-
-
-section {* EXERCISE 17 *}
-
-text {*
-  Fill in the gaps in the t_Lam case. You will need
-  the type substitution lemma proved above. 
-*}
-
-theorem cbv_type_preservation:
-  assumes a: "t \<longrightarrow>cbv t'"
-  and     b: "\<Gamma> \<turnstile> t : T" 
-  shows "\<Gamma> \<turnstile> t' : T"
-using a b
-proof (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct)
-  case (cbv1 v x t \<Gamma> T) 
-  have fc: "atom x \<sharp> \<Gamma>" by fact
-  have "\<Gamma> \<turnstile> App (Lam [x]. t) v : T" by fact
-  then obtain T' where 
-      *: "\<Gamma> \<turnstile> Lam [x]. t : T' \<rightarrow> T" and 
-     **: "\<Gamma> \<turnstile> v : T'" by (rule t_App_elim)
-  have "(x, T') # \<Gamma> \<turnstile> t : T" using * fc by (rule t_Lam_elim) (simp add: ty.eq_iff)
-
-  show "\<Gamma> \<turnstile> t [x ::= v] : T " sorry
-qed (auto elim!: t_App_elim)
-
-text {*
-  We can easily extend this to sequences of cbv* reductions.
-*}
-
-corollary cbvs_type_preservation:
-  assumes a: "t \<longrightarrow>cbv* t'"
-  and     b: "\<Gamma> \<turnstile> t : T" 
-  shows "\<Gamma> \<turnstile> t' : T"
-using a b
-by (induct) (auto intro: cbv_type_preservation)
-
-text {* 
-  The type-preservation property for the machine and 
-  evaluation relation. 
-*}
-
-theorem machine_type_preservation:
-  assumes a: "<t, []> \<mapsto>* <t', []>"
-  and     b: "\<Gamma> \<turnstile> t : T" 
-  shows "\<Gamma> \<turnstile> t' : T"
-proof -
-  have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp
-  then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp
-qed
-
-theorem eval_type_preservation:
-  assumes a: "t \<Down> t'"
-  and     b: "\<Gamma> \<turnstile> t : T" 
-  shows "\<Gamma> \<turnstile> t' : T"
-proof -
-  have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp
-  then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp
-qed
-
-text {* The Progress Property *}
-
-lemma canonical_tArr:
-  assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2"
-  and     b: "val t"
-  obtains x t' where "t = Lam [x].t'"
-using b a by (induct) (auto) 
-
-theorem progress:
-  assumes a: "[] \<turnstile> t : T"
-  shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
-using a
-by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
-   (auto elim: canonical_tArr simp add: val.simps)
-
-text {*
-  Done! Congratulations!
-*}
-
-end
-