--- a/Nominal/Ex/Let_ExhaustIssue.thy Tue Feb 19 05:38:46 2013 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,130 +0,0 @@
-theory Let
-imports "../Nominal2"
-begin
-
-
-atom_decl name
-
-nominal_datatype trm =
- Var "name"
-| App "trm" "trm"
-| Lam x::"name" t::"trm" binds x in t
-| Let as::"assn" t::"trm" binds "bn as" in t
-and assn =
- ANil
-| ACons "name" "trm" "assn"
-binder
- bn
-where
- "bn ANil = []"
-| "bn (ACons x t as) = (atom x) # (bn as)"
-
-lemma alpha_bn_inducts_raw:
- "\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw;
- \<And>trm_raw trm_rawa assn_raw assn_rawa name namea.
- \<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa;
- P3 assn_raw assn_rawa\<rbrakk>
- \<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw)
- (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
- by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
-
-lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
-
-lemma alpha_bn_refl: "alpha_bn x x"
- by (induct x rule: trm_assn.inducts(2))
- (rule TrueI, auto simp add: trm_assn.eq_iff)
-
-lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
- by (simp add: permute_pure)
-
-lemma what_we_would_like:
- assumes a: "alpha_bn as asa"
- shows "\<forall>p. set (bn as) \<sharp>* fv_bn as \<and> set (bn asa) \<sharp>* fv_bn asa \<and>
- p \<bullet> bn as = bn asa \<and> supp p \<subseteq> set (bn as) \<union> set (bn asa) \<longrightarrow> p \<bullet> as = asa"
- apply (rule alpha_bn_inducts[OF a])
- apply
- (simp_all add: trm_assn.bn_defs trm_assn.perm_bn_simps trm_assn.supp)
- apply clarify
- apply simp
- apply (simp add: atom_eqvt)
- apply (case_tac "name = namea")
- sorry
-
-lemma Abs_lst_fcb2:
- fixes as bs :: "'a :: fs"
- and x y :: "'b :: fs"
- and c::"'c::fs"
- assumes eq: "[ba as]lst. x = [ba bs]lst. y"
- and fcb1: "set (ba as) \<sharp>* f as x c"
- and fresh1: "set (ba as) \<sharp>* c"
- and fresh2: "set (ba bs) \<sharp>* c"
- and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
- and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
- and ba_inj: "\<And>q r. q \<bullet> ba as = r \<bullet> ba bs \<Longrightarrow> q \<bullet> as = r \<bullet> bs"
- shows "f as x c = f bs y c"
-sorry
-
-nominal_primrec
- height_trm :: "trm \<Rightarrow> nat"
-and height_assn :: "assn \<Rightarrow> nat"
-where
- "height_trm (Var x) = 1"
-| "height_trm (App l r) = max (height_trm l) (height_trm r)"
-| "height_trm (Lam v b) = 1 + (height_trm b)"
-| "set (bn as) \<sharp>* fv_bn as \<Longrightarrow> height_trm (Let as b) = max (height_assn as) (height_trm b)"
-| "height_assn ANil = 0"
-| "height_assn (ACons v t as) = max (height_trm t) (height_assn as)"
- apply (simp only: eqvt_def height_trm_height_assn_graph_def)
- apply (rule, perm_simp, rule, rule TrueI)
- apply (case_tac x)
- apply (rule_tac y="a" in trm_assn.strong_exhaust(1))
- apply (auto)[4]
- apply (drule_tac x="assn" in meta_spec)
- apply (drule_tac x="trm" in meta_spec)
- apply (simp add: alpha_bn_refl)
---"HERE"
- defer
- apply (case_tac b rule: trm_assn.exhaust(2))
- apply (auto)[2]
- apply(simp_all)
- apply (erule_tac c="()" in Abs_lst_fcb2)
- apply (simp_all add: pure_fresh fresh_star_def)[3]
- apply (simp add: eqvt_at_def)
- apply (simp add: eqvt_at_def)
- apply assumption
- apply(erule conjE)
- apply (simp add: meta_eq_to_obj_eq[OF height_trm_def, symmetric, unfolded fun_eq_iff])
- apply (simp add: meta_eq_to_obj_eq[OF height_assn_def, symmetric, unfolded fun_eq_iff])
- apply (subgoal_tac "eqvt_at height_assn as")
- apply (subgoal_tac "eqvt_at height_assn asa")
- apply (subgoal_tac "eqvt_at height_trm b")
- apply (subgoal_tac "eqvt_at height_trm ba")
- apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr as)")
- apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr asa)")
- apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl b)")
- apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl ba)")
- defer
- apply (simp add: eqvt_at_def height_trm_def)
- apply (simp add: eqvt_at_def height_trm_def)
- apply (simp add: eqvt_at_def height_assn_def)
- apply (simp add: eqvt_at_def height_assn_def)
- defer
- apply (subgoal_tac "height_assn as = height_assn asa")
- apply (subgoal_tac "height_trm b = height_trm ba")
- apply simp
- apply (erule_tac c="()" in Abs_lst_fcb2)
- apply (simp_all add: pure_fresh fresh_star_def)[3]
- apply (simp_all add: eqvt_at_def)[2]
- apply assumption
- apply (erule_tac Abs_lst_fcb)
- apply (simp_all add: pure_fresh fresh_star_def)[2]
- apply (drule what_we_would_like)
- apply (drule_tac x="p" in spec)
- apply simp
- apply (simp add: eqvt_at_def)
- oops
-
-end
-
-
-