--- a/Nominal/Ex/BetaCR.thy Tue Feb 19 05:38:46 2013 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,378 +0,0 @@
-theory BetaCR
-imports CR
-begin
-
-(* TODO1: Does not work:*)
-
-(* equivariance beta_star *)
-
-(* proved manually below. *)
-
-lemma eqvt_helper: "x1 \<longrightarrow>b* x2 \<Longrightarrow> (p \<bullet> x1) \<longrightarrow>b* (p \<bullet> x2)"
- by (erule beta_star.induct)
- (metis beta.eqvt bs2 bs1)+
-
-lemma [eqvt]: "p \<bullet> (x1 \<longrightarrow>b* x2) = ((p \<bullet> x1) \<longrightarrow>b* (p \<bullet> x2))"
- apply rule
- apply (drule permute_boolE)
- apply (erule eqvt_helper)
- apply (intro permute_boolI)
- apply (drule_tac p="-p" in eqvt_helper)
- by simp
-
-definition
- equ :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<approx> _")
-where
- "t \<approx> s \<longleftrightarrow> (\<exists>r. t \<longrightarrow>b* r \<and> s \<longrightarrow>b* r)"
-
-lemma equ_refl:
- shows "t \<approx> t"
- unfolding equ_def by auto
-
-lemma equ_sym:
- assumes "t \<approx> s"
- shows "s \<approx> t"
- using assms unfolding equ_def
- by auto
-
-lemma equ_trans:
- assumes "A \<approx> B" "B \<approx> C"
- shows "A \<approx> C"
- using assms unfolding equ_def
-proof (elim exE conjE)
- fix D E
- assume a: "A \<longrightarrow>b* D" "B \<longrightarrow>b* D" "B \<longrightarrow>b* E" "C \<longrightarrow>b* E"
- then obtain F where "D \<longrightarrow>b* F" "E \<longrightarrow>b* F" using CR_for_Beta_star by blast
- then have "A \<longrightarrow>b* F \<and> C \<longrightarrow>b* F" using a bs3 by blast
- then show "\<exists>F. A \<longrightarrow>b* F \<and> C \<longrightarrow>b* F" by blast
-qed
-
-lemma App_beta: "A \<longrightarrow>b* B \<Longrightarrow> C \<longrightarrow>b* D \<Longrightarrow> App A C \<longrightarrow>b* App B D"
- apply (erule beta_star.induct)
- apply auto
- apply (erule beta_star.induct)
- apply auto
- done
-
-lemma Lam_beta: "A \<longrightarrow>b* B \<Longrightarrow> Lam [x]. A \<longrightarrow>b* Lam [x]. B"
- by (erule beta_star.induct) auto
-
-lemma Lam_rsp: "A \<approx> B \<Longrightarrow> Lam [x]. A \<approx> Lam [x]. B"
- unfolding equ_def
- apply auto
- apply (rule_tac x="Lam [x]. r" in exI)
- apply (auto simp add: Lam_beta)
- done
-
-lemma [quot_respect]:
- shows "(op = ===> equ) Var Var"
- and "(equ ===> equ ===> equ) App App"
- and "(op = ===> equ ===> equ) CR.Lam CR.Lam"
- unfolding fun_rel_def equ_def
- apply auto
- apply (rule_tac x="App r ra" in exI)
- apply (auto simp add: App_beta)
- apply (rule_tac x="Lam [x]. r" in exI)
- apply (auto simp add: Lam_beta)
- done
-
-lemma beta_subst1_pre: "B \<longrightarrow>b C \<Longrightarrow> A [x ::= B] \<longrightarrow>b* A [x ::= C]"
- by (nominal_induct A avoiding: x B C rule: lam.strong_induct)
- (auto simp add: App_beta Lam_beta)
-
-lemma beta_subst1: "B \<longrightarrow>b* C \<Longrightarrow> A [x ::= B] \<longrightarrow>b* A [x ::= C]"
- apply (erule beta_star.induct)
- apply auto
- apply (subgoal_tac "A [x ::= M2] \<longrightarrow>b* A [x ::= M3]")
- apply (rotate_tac 1)
- apply (erule bs3)
- apply assumption
- apply (simp add: beta_subst1_pre)
- done
-
-lemma beta_subst2_pre:
- assumes "A \<longrightarrow>b B" shows "A [x ::= C] \<longrightarrow>b* B [x ::= C]"
- using assms
- apply (nominal_induct avoiding: x C rule: beta.strong_induct)
- apply (auto simp add: App_beta fresh_star_def fresh_Pair Lam_beta)[3]
- apply (subst substitution_lemma)
- apply (auto simp add: fresh_star_def fresh_Pair fresh_at_base)[2]
- apply (auto simp add: fresh_star_def fresh_Pair)
- apply (rule beta_star.intros)
- defer
- apply (subst beta.intros)
- apply (auto simp add: fresh_fact)
- done
-
-lemma beta_subst2: "A \<longrightarrow>b* B \<Longrightarrow> A [x ::= C] \<longrightarrow>b* B [x ::= C]"
- apply (erule beta_star.induct)
- apply auto
- apply (subgoal_tac "M2[x ::= C] \<longrightarrow>b* M3[x ::= C]")
- apply (rotate_tac 1)
- apply (erule bs3)
- apply assumption
- apply (simp add: beta_subst2_pre)
- done
-
-lemma beta_subst: "A \<longrightarrow>b* B \<Longrightarrow> C \<longrightarrow>b* D \<Longrightarrow> A [x ::= C] \<longrightarrow>b* B [x ::= D]"
- using beta_subst1 beta_subst2 bs3 by metis
-
-lemma subst_rsp_pre:
- "x \<approx> y \<Longrightarrow> xb \<approx> ya \<Longrightarrow> x [xa ::= xb] \<approx> y [xa ::= ya]"
- unfolding equ_def
- apply auto
- apply (rule_tac x="r [xa ::= ra]" in exI)
- apply (simp add: beta_subst)
- done
-
-lemma [quot_respect]:
- shows "(equ ===> op = ===> equ ===> equ) subst subst"
-unfolding fun_rel_def by (auto simp add: subst_rsp_pre)
-
-lemma [quot_respect]:
- shows "(op = ===> equ ===> equ) permute permute"
- unfolding fun_rel_def equ_def
- apply (auto intro: eqvts)
- apply (rule_tac x="x \<bullet> r" in exI)
- using eqvts(1) permute_boolI by metis
-
-quotient_type qlam = lam / equ
- by (auto intro!: equivpI reflpI sympI transpI simp add: equ_refl equ_sym)
- (erule equ_trans, assumption)
-
-quotient_definition "QVar::name \<Rightarrow> qlam" is Var
-quotient_definition "QApp::qlam \<Rightarrow> qlam \<Rightarrow> qlam" is App
-quotient_definition QLam ("QLam [_]._")
- where "QLam::name \<Rightarrow> qlam \<Rightarrow> qlam" is CR.Lam
-
-lemmas qlam_strong_induct = lam.strong_induct[quot_lifted]
-lemmas qlam_induct = lam.induct[quot_lifted]
-
-instantiation qlam :: pt
-begin
-
-quotient_definition "permute_qlam::perm \<Rightarrow> qlam \<Rightarrow> qlam"
- is "permute::perm \<Rightarrow> lam \<Rightarrow> lam"
-
-instance
-apply default
-apply(descending)
-apply(simp)
-apply(rule equ_refl)
-apply(descending)
-apply(simp)
-apply(rule equ_refl)
-done
-
-end
-
-lemma qlam_perm[simp, eqvt]:
- shows "p \<bullet> (QVar x) = QVar (p \<bullet> x)"
- and "p \<bullet> (QApp t s) = QApp (p \<bullet> t) (p \<bullet> s)"
- and "p \<bullet> (QLam [x].t) = QLam [p \<bullet> x].(p \<bullet> t)"
- by(descending, simp add: equ_refl)+
-
-lemma qlam_supports:
- shows "{atom x} supports (QVar x)"
- and "supp (t, s) supports (QApp t s)"
- and "supp (x, t) supports (QLam [x].t)"
-unfolding supports_def fresh_def[symmetric]
-by (auto simp add: swap_fresh_fresh)
-
-lemma qlam_fs:
- fixes t::"qlam"
- shows "finite (supp t)"
-apply(induct t rule: qlam_induct)
-apply(rule supports_finite)
-apply(rule qlam_supports)
-apply(simp)
-apply(rule supports_finite)
-apply(rule qlam_supports)
-apply(simp add: supp_Pair)
-apply(rule supports_finite)
-apply(rule qlam_supports)
-apply(simp add: supp_Pair finite_supp)
-done
-
-instantiation qlam :: fs
-begin
-
-instance
-apply(default)
-apply(rule qlam_fs)
-done
-
-end
-
-quotient_definition subst_qlam ("_[_ ::q= _]")
- where "subst_qlam::qlam \<Rightarrow> name \<Rightarrow> qlam \<Rightarrow> qlam" is subst
-
-definition
- "Supp t = \<Inter>{supp s | s. s \<approx> t}"
-
-lemma Supp_rsp:
- "a \<approx> b \<Longrightarrow> Supp a = Supp b"
- unfolding Supp_def
- apply(rule_tac f="Inter" in arg_cong)
- apply(auto)
- apply (metis equ_trans)
- by (metis equivp_def qlam_equivp)
-
-lemma [quot_respect]:
- shows "(equ ===> op=) Supp Supp"
- unfolding fun_rel_def by (auto simp add: Supp_rsp)
-
-quotient_definition "supp_qlam::qlam \<Rightarrow> atom set"
- is "Supp::lam \<Rightarrow> atom set"
-
-lemma Supp_supp:
- "Supp t \<subseteq> supp t"
-unfolding Supp_def
-apply(auto)
-apply(drule_tac x="supp t" in spec)
-apply(auto simp add: equ_refl)
-done
-
-lemma supp_subst:
- shows "supp (t[x ::= s]) \<subseteq> (supp t - {atom x}) \<union> supp s"
- by (induct t x s rule: subst.induct) (auto simp add: lam.supp supp_at_base)
-
-lemma supp_beta: "x \<longrightarrow>b r \<Longrightarrow> supp r \<subseteq> supp x"
- apply (induct rule: beta.induct)
- apply (simp_all add: lam.supp)
- apply blast+
- using supp_subst by blast
-
-lemma supp_beta_star: "x \<longrightarrow>b* r \<Longrightarrow> supp r \<subseteq> supp x"
- apply (erule beta_star.induct)
- apply auto
- using supp_beta by blast
-
-lemma supp_equ: "x \<approx> y \<Longrightarrow> \<exists>z. z \<approx> x \<and> supp z \<subseteq> supp x \<inter> supp y"
- unfolding equ_def
- apply (simp (no_asm) only: equ_def[symmetric])
- apply (elim exE)
- apply (rule_tac x=r in exI)
- apply rule
- apply (metis bs1 equ_def)
- using supp_beta_star by blast
-
-lemma supp_psubset: "Supp x \<subset> supp x \<Longrightarrow> \<exists>t. t \<approx> x \<and> supp t \<subset> supp x"
-proof -
- assume "Supp x \<subset> supp x"
- then obtain a where "a \<in> supp x" "a \<notin> Supp x" by blast
- then obtain y where nin: "y \<approx> x" "a \<notin> supp y" unfolding Supp_def by blast
- then obtain t where eq: "t \<approx> x" "supp t \<subseteq> supp x \<inter> supp y"
- using supp_equ equ_sym by blast
- then have "supp t \<subset> supp x" using nin
- by (metis `(a\<Colon>atom) \<in> supp (x\<Colon>lam)` le_infE psubset_eq set_rev_mp)
- then show "\<exists>t. t \<approx> x \<and> supp t \<subset> supp x" using eq by blast
-qed
-
-lemma Supp_exists: "\<exists>t. supp t = Supp t \<and> t \<approx> x"
-proof -
- have "\<And>fs x. supp x = fs \<Longrightarrow> \<exists>t. supp t = Supp t \<and> t \<approx> x"
- proof -
- fix fs
- show "\<And>x. supp x = fs \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
- proof (cases "finite fs")
- case True
- assume fs: "finite fs"
- then show "\<And>x. supp x = fs \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
- proof (induct fs rule: finite_psubset_induct, clarify)
- fix A :: "atom set" fix x :: lam
- assume IH: "\<And>B xa. \<lbrakk>B \<subset> supp x; supp xa = B\<rbrakk> \<Longrightarrow> \<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> xa"
- show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
- proof (cases "supp x = Supp x")
- assume "supp x = Supp x"
- then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
- by (rule_tac x="x" in exI) (simp add: equ_refl)
- next
- assume "supp x \<noteq> Supp x"
- then have "Supp x \<subset> supp x" using Supp_supp by blast
- then obtain y where a1: "supp y \<subset> supp x" "y \<approx> x"
- using supp_psubset by blast
- then obtain t where "supp t = Supp t \<and> t \<approx> y"
- using IH[of "supp y" y] by blast
- then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x" using a1 equ_trans
- by blast
- qed
- qed
- next
- case False
- fix x :: lam
- assume "supp x = fs" "infinite fs"
- then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x"
- by (auto simp add: finite_supp)
- qed simp
- qed
- then show "\<exists>t\<Colon>lam. supp t = Supp t \<and> t \<approx> x" by blast
-qed
-
-lemma subst3: "x \<noteq> y \<and> atom x \<notin> Supp s \<Longrightarrow> Lam [x]. t [y ::= s] \<approx> Lam [x]. (t [y ::= s])"
-proof -
- assume as: "x \<noteq> y \<and> atom x \<notin> Supp s"
- obtain s' where s: "supp s' = Supp s'" "s' \<approx> s" using Supp_exists[of s] by blast
- then have lhs: "Lam [x]. t [y ::= s] \<approx> Lam [x]. t [y ::= s']" using subst_rsp_pre equ_refl equ_sym by blast
- have supp: "Supp s' = Supp s" using Supp_rsp s(2) by blast
- have lhs_rhs: "Lam [x]. t [y ::= s'] = Lam [x]. (t [y ::= s'])"
- by (simp add: fresh_def supp_Pair s supp as supp_at_base)
- have "t [y ::= s'] \<approx> t [y ::= s]"
- using subst_rsp_pre[OF equ_refl s(2)] .
- with Lam_rsp have rhs: "Lam [x]. (t [y ::= s']) \<approx> Lam [x]. (t [y ::= s])" .
- show ?thesis
- using lhs[unfolded lhs_rhs] rhs equ_trans by blast
-qed
-
-thm subst3[quot_lifted]
-
-lemma Supp_Lam:
- "atom a \<notin> Supp (Lam [a].t)"
-proof -
- have "atom a \<notin> supp (Lam [a].t)" by (simp add: lam.supp)
- then show ?thesis using Supp_supp
- by blast
-qed
-
-lemma [eqvt]: "(p \<bullet> (a \<approx> b)) = ((p \<bullet> a) \<approx> (p \<bullet> b))"
- unfolding equ_def
- by perm_simp rule
-
-lemma [eqvt]: "p \<bullet> (Supp x) = Supp (p \<bullet> x)"
- unfolding Supp_def
- by perm_simp rule
-
-lemmas s = Supp_Lam[quot_lifted]
-
-lemma var_beta_pre: "s \<longrightarrow>b* r \<Longrightarrow> s = Var name \<Longrightarrow> r = Var name"
- apply (induct rule: beta_star.induct)
- apply simp
- apply (subgoal_tac "M2 = Var name")
- apply (thin_tac "M1 \<longrightarrow>b* M2")
- apply (thin_tac "M1 = Var name")
- apply (thin_tac "M1 = Var name \<Longrightarrow> M2 = Var name")
- defer
- apply simp
- apply (erule_tac beta.cases)
- apply simp_all
- done
-
-lemma var_beta: "Var name \<longrightarrow>b* r \<longleftrightarrow> r = Var name"
- by (auto simp add: var_beta_pre)
-
-lemma qlam_eq_iff:
- "(QVar n = QVar m) = (n = m)"
- apply descending unfolding equ_def var_beta by auto
-
-lemma "supp (QVar n) = {atom n}"
- unfolding supp_def
- apply simp
- unfolding qlam_eq_iff
- apply (fold supp_def)
- apply (simp add: supp_at_base)
- done
-
-end
-
-
-