Attic/Quot/Examples/LFex.thy
branchNominal2-Isabelle2013
changeset 3208 da575186d492
parent 3206 fb201e383f1b
child 3209 2fb0bc0dcbf1
--- a/Attic/Quot/Examples/LFex.thy	Tue Feb 19 05:38:46 2013 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,331 +0,0 @@
-theory LFex
-imports Nominal "../Quotient_List"
-begin
-
-atom_decl name ident
-
-nominal_datatype kind = 
-    Type
-  | KPi "ty" "name" "kind"
-and ty =  
-    TConst "ident"
-  | TApp "ty" "trm"
-  | TPi "ty" "name" "ty"
-and trm = 
-    Const "ident"
-  | Var "name"
-  | App "trm" "trm"
-  | Lam "ty" "name" "trm" 
-
-function
-    fv_kind :: "kind \<Rightarrow> name set"
-and fv_ty   :: "ty \<Rightarrow> name set"
-and fv_trm  :: "trm \<Rightarrow> name set"
-where
-  "fv_kind (Type) = {}"
-| "fv_kind (KPi A x K) = (fv_ty A) \<union> ((fv_kind K) - {x})"
-| "fv_ty (TConst i) = {}"
-| "fv_ty (TApp A M) = (fv_ty A) \<union> (fv_trm M)"
-| "fv_ty (TPi A x B) = (fv_ty A) \<union> ((fv_ty B) - {x})"
-| "fv_trm (Const i) = {}"
-| "fv_trm (Var x) = {x}"
-| "fv_trm (App M N) = (fv_trm M) \<union> (fv_trm N)"
-| "fv_trm (Lam A x M) = (fv_ty A) \<union> ((fv_trm M) - {x})"
-sorry
-
-termination fv_kind sorry
-
-inductive
-    akind :: "kind \<Rightarrow> kind \<Rightarrow> bool" ("_ \<approx>ki _" [100, 100] 100)
-and aty   :: "ty \<Rightarrow> ty \<Rightarrow> bool"     ("_ \<approx>ty _" [100, 100] 100)
-and atrm  :: "trm \<Rightarrow> trm \<Rightarrow> bool"   ("_ \<approx>tr _" [100, 100] 100)
-where
-  a1:  "(Type) \<approx>ki (Type)"
-| a21: "\<lbrakk>A \<approx>ty A'; K \<approx>ki K'\<rbrakk> \<Longrightarrow> (KPi A x K) \<approx>ki (KPi A' x K')"
-| a22: "\<lbrakk>A \<approx>ty A'; K \<approx>ki ([(x,x')]\<bullet>K'); x \<notin> (fv_ty A'); x \<notin> ((fv_kind K') - {x'})\<rbrakk> 
-        \<Longrightarrow> (KPi A x K) \<approx>ki (KPi A' x' K')"
-| a3:  "i = j \<Longrightarrow> (TConst i) \<approx>ty (TConst j)"
-| a4:  "\<lbrakk>A \<approx>ty A'; M \<approx>tr M'\<rbrakk> \<Longrightarrow> (TApp A M) \<approx>ty (TApp A' M')"
-| a51: "\<lbrakk>A \<approx>ty A'; B \<approx>ty B'\<rbrakk> \<Longrightarrow> (TPi A x B) \<approx>ty (TPi A' x B')"
-| a52: "\<lbrakk>A \<approx>ty A'; B \<approx>ty ([(x,x')]\<bullet>B'); x \<notin> (fv_ty B'); x \<notin> ((fv_ty B') - {x'})\<rbrakk> 
-        \<Longrightarrow> (TPi A x B) \<approx>ty (TPi A' x' B')"
-| a6:  "i = j \<Longrightarrow> (Const i) \<approx>trm (Const j)"
-| a7:  "x = y \<Longrightarrow> (Var x) \<approx>trm (Var y)"
-| a8:  "\<lbrakk>M \<approx>trm M'; N \<approx>tr N'\<rbrakk> \<Longrightarrow> (App M N) \<approx>tr (App M' N')"
-| a91: "\<lbrakk>A \<approx>ty A'; M \<approx>tr M'\<rbrakk> \<Longrightarrow> (Lam A x M) \<approx>tr (Lam A' x M')"
-| a92: "\<lbrakk>A \<approx>ty A'; M \<approx>tr ([(x,x')]\<bullet>M'); x \<notin> (fv_ty B'); x \<notin> ((fv_trm M') - {x'})\<rbrakk> 
-        \<Longrightarrow> (Lam A x M) \<approx>tr (Lam A' x' M')"
-
-lemma al_refl:
-  fixes K::"kind" 
-  and   A::"ty"
-  and   M::"trm"
-  shows "K \<approx>ki K"
-  and   "A \<approx>ty A"
-  and   "M \<approx>tr M"
-  apply(induct K and A and M rule: kind_ty_trm.inducts)
-  apply(auto intro: akind_aty_atrm.intros)
-  done
-
-lemma alpha_equivps:
-  shows "equivp akind"
-  and   "equivp aty"
-  and   "equivp atrm"
-sorry
-
-quotient_type KIND = kind / akind
-  by (rule alpha_equivps)
-
-quotient_type 
-    TY = ty / aty and   
-    TRM = trm / atrm
-  by (auto intro: alpha_equivps)
-
-quotient_definition
-   "TYP :: KIND"
-is
-  "Type"
-
-quotient_definition
-   "KPI :: TY \<Rightarrow> name \<Rightarrow> KIND \<Rightarrow> KIND"
-is
-  "KPi"
-
-quotient_definition
-   "TCONST :: ident \<Rightarrow> TY"
-is
-  "TConst"
-
-quotient_definition
-   "TAPP :: TY \<Rightarrow> TRM \<Rightarrow> TY"
-is
-  "TApp"
-
-quotient_definition
-   "TPI :: TY \<Rightarrow> name \<Rightarrow> TY \<Rightarrow> TY"
-is
-  "TPi"
-
-(* FIXME: does not work with CONST *)
-quotient_definition
-   "CONS :: ident \<Rightarrow> TRM"
-is
-  "Const"
-
-quotient_definition
-   "VAR :: name \<Rightarrow> TRM"
-is
-  "Var"
-
-quotient_definition
-   "APP :: TRM \<Rightarrow> TRM \<Rightarrow> TRM"
-is
-  "App"
-
-quotient_definition
-   "LAM :: TY \<Rightarrow> name \<Rightarrow> TRM \<Rightarrow> TRM"
-is
-  "Lam"
-
-thm TYP_def
-thm KPI_def
-thm TCONST_def
-thm TAPP_def
-thm TPI_def
-thm VAR_def
-thm CONS_def
-thm APP_def
-thm LAM_def
-
-(* FIXME: print out a warning if the type contains a liftet type, like kind \<Rightarrow> name set *)
-quotient_definition
-   "FV_kind :: KIND \<Rightarrow> name set"
-is
-  "fv_kind"
-
-quotient_definition
-   "FV_ty :: TY \<Rightarrow> name set"
-is
-  "fv_ty"
-
-quotient_definition
-   "FV_trm :: TRM \<Rightarrow> name set"
-is
-  "fv_trm"
-
-thm FV_kind_def
-thm FV_ty_def
-thm FV_trm_def
-
-(* FIXME: does not work yet *)
-overloading
-    perm_kind \<equiv> "perm :: 'x prm \<Rightarrow> KIND \<Rightarrow> KIND"   (unchecked)
-    perm_ty   \<equiv> "perm :: 'x prm \<Rightarrow> TY \<Rightarrow> TY"       (unchecked)
-    perm_trm  \<equiv> "perm :: 'x prm \<Rightarrow> TRM \<Rightarrow> TRM"     (unchecked) 
-begin
-
-quotient_definition
-   "perm_kind :: 'x prm \<Rightarrow> KIND \<Rightarrow> KIND"
-is
-  "(perm::'x prm \<Rightarrow> kind \<Rightarrow> kind)"
-
-quotient_definition
-   "perm_ty :: 'x prm \<Rightarrow> TY \<Rightarrow> TY"
-is
-  "(perm::'x prm \<Rightarrow> ty \<Rightarrow> ty)"
-
-quotient_definition
-   "perm_trm :: 'x prm \<Rightarrow> TRM \<Rightarrow> TRM"
-is
-  "(perm::'x prm \<Rightarrow> trm \<Rightarrow> trm)"
-
-end
-
-(* TODO/FIXME: Think whether these RSP theorems are true. *)
-lemma kpi_rsp[quot_respect]: 
-  "(aty ===> op = ===> akind ===> akind) KPi KPi" sorry
-lemma tconst_rsp[quot_respect]: 
-  "(op = ===> aty) TConst TConst" sorry
-lemma tapp_rsp[quot_respect]: 
-  "(aty ===> atrm ===> aty) TApp TApp" sorry
-lemma tpi_rsp[quot_respect]: 
-  "(aty ===> op = ===> aty ===> aty) TPi TPi" sorry
-lemma var_rsp[quot_respect]: 
-  "(op = ===> atrm) Var Var" sorry
-lemma app_rsp[quot_respect]: 
-  "(atrm ===> atrm ===> atrm) App App" sorry
-lemma const_rsp[quot_respect]: 
-  "(op = ===> atrm) Const Const" sorry
-lemma lam_rsp[quot_respect]: 
-  "(aty ===> op = ===> atrm ===> atrm) Lam Lam" sorry
-
-lemma perm_kind_rsp[quot_respect]: 
-  "(op = ===> akind ===> akind) op \<bullet> op \<bullet>" sorry
-lemma perm_ty_rsp[quot_respect]: 
-  "(op = ===> aty ===> aty) op \<bullet> op \<bullet>" sorry
-lemma perm_trm_rsp[quot_respect]: 
-  "(op = ===> atrm ===> atrm) op \<bullet> op \<bullet>" sorry
-
-lemma fv_ty_rsp[quot_respect]: 
-  "(aty ===> op =) fv_ty fv_ty" sorry
-lemma fv_kind_rsp[quot_respect]: 
-  "(akind ===> op =) fv_kind fv_kind" sorry
-lemma fv_trm_rsp[quot_respect]: 
-  "(atrm ===> op =) fv_trm fv_trm" sorry
-
-
-thm akind_aty_atrm.induct
-thm kind_ty_trm.induct
-
-
-lemma 
-  assumes a0:
-  "P1 TYP TYP"
-  and a1: 
-  "\<And>A A' K K' x. \<lbrakk>(A::TY) = A'; P2 A A'; (K::KIND) = K'; P1 K K'\<rbrakk> 
-  \<Longrightarrow> P1 (KPI A x K) (KPI A' x K')"
-  and a2:    
-  "\<And>A A' K K' x x'. \<lbrakk>(A ::TY) = A'; P2 A A'; (K :: KIND) = ([(x, x')] \<bullet> K'); P1 K ([(x, x')] \<bullet> K'); 
-    x \<notin> FV_ty A'; x \<notin> FV_kind K' - {x'}\<rbrakk> \<Longrightarrow> P1 (KPI A x K) (KPI A' x' K')"
-  and a3: 
-  "\<And>i j. i = j \<Longrightarrow> P2 (TCONST i) (TCONST j)"
-  and a4:
-  "\<And>A A' M M'. \<lbrakk>(A ::TY) = A'; P2 A A'; (M :: TRM) = M'; P3 M M'\<rbrakk> \<Longrightarrow> P2 (TAPP A M) (TAPP A' M')"
-  and a5:
-  "\<And>A A' B B' x. \<lbrakk>(A ::TY) = A'; P2 A A'; (B ::TY) = B'; P2 B B'\<rbrakk> \<Longrightarrow> P2 (TPI A x B) (TPI A' x B')"
-  and a6:
-  "\<And>A A' B x x' B'. \<lbrakk>(A ::TY) = A'; P2 A A'; (B ::TY) = ([(x, x')] \<bullet> B'); P2 B ([(x, x')] \<bullet> B'); 
-  x \<notin> FV_ty B'; x \<notin> FV_ty B' - {x'}\<rbrakk> \<Longrightarrow> P2 (TPI A x B) (TPI A' x' B')"
-  and a7:
-  "\<And>i j m. i = j \<Longrightarrow> P3 (CONS i) (m (CONS j))"
-  and a8:
-  "\<And>x y m. x = y \<Longrightarrow> P3 (VAR x) (m (VAR y))"
-  and a9:
-  "\<And>M m M' N N'. \<lbrakk>(M :: TRM) = m M'; P3 M (m M'); (N :: TRM) = N'; P3 N N'\<rbrakk> \<Longrightarrow> P3 (APP M N) (APP M' N')"
-  and a10: 
-  "\<And>A A' M M' x. \<lbrakk>(A ::TY) = A'; P2 A A'; (M :: TRM) = M'; P3 M M'\<rbrakk> \<Longrightarrow> P3 (LAM A x M) (LAM A' x M')"
-  and a11:
-  "\<And>A A' M x x' M' B'. \<lbrakk>(A ::TY) = A'; P2 A A'; (M :: TRM) = ([(x, x')] \<bullet> M'); P3 M ([(x, x')] \<bullet> M'); 
-  x \<notin> FV_ty B'; x \<notin> FV_trm M' - {x'}\<rbrakk> \<Longrightarrow> P3 (LAM A x M) (LAM A' x' M')"
-  shows "((x1 :: KIND) = x2 \<longrightarrow> P1 x1 x2) \<and>
-         ((x3 ::TY) = x4 \<longrightarrow> P2 x3 x4) \<and> 
-         ((x5 :: TRM) = x6 \<longrightarrow> P3 x5 x6)"
-using a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
-apply(lifting_setup akind_aty_atrm.induct)
-defer
-apply injection
-apply cleaning
-apply (simp only: ball_reg_eqv[OF KIND_equivp] ball_reg_eqv[OF TRM_equivp] ball_reg_eqv[OF TY_equivp])
-apply (rule ball_reg_right)+
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-defer
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-defer
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-defer
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply (tactic {* resolve_tac (Inductive.get_monos @{context}) 1 *})
-apply simp
-apply simp
-apply regularize+
-done
-
-(* Does not work:
-lemma
-  assumes a0: "P1 TYP"
-  and     a1: "\<And>ty name kind. \<lbrakk>P2 ty; P1 kind\<rbrakk> \<Longrightarrow> P1 (KPI ty name kind)"
-  and     a2: "\<And>id. P2 (TCONST id)"
-  and     a3: "\<And>ty trm. \<lbrakk>P2 ty; P3 trm\<rbrakk> \<Longrightarrow> P2 (TAPP ty trm)"
-  and     a4: "\<And>ty1 name ty2. \<lbrakk>P2 ty1; P2 ty2\<rbrakk> \<Longrightarrow> P2 (TPI ty1 name ty2)"
-  and     a5: "\<And>id. P3 (CONS id)"
-  and     a6: "\<And>name. P3 (VAR name)"
-  and     a7: "\<And>trm1 trm2. \<lbrakk>P3 trm1; P3 trm2\<rbrakk> \<Longrightarrow> P3 (APP trm1 trm2)"
-  and     a8: "\<And>ty name trm. \<lbrakk>P2 ty; P3 trm\<rbrakk> \<Longrightarrow> P3 (LAM ty name trm)"
-  shows "P1 mkind \<and> P2 mty \<and> P3 mtrm"
-using a0 a1 a2 a3 a4 a5 a6 a7 a8
-*)
-
-
-lemma "\<lbrakk>P TYP;
-  \<And>ty name kind. \<lbrakk>Q ty; P kind\<rbrakk> \<Longrightarrow> P (KPI ty name kind);
-  \<And>id. Q (TCONST id);
-  \<And>ty trm. \<lbrakk>Q ty; R trm\<rbrakk> \<Longrightarrow> Q (TAPP ty trm);
-  \<And>ty1 name ty2. \<lbrakk>Q ty1; Q ty2\<rbrakk> \<Longrightarrow> Q (TPI ty1 name ty2);
-  \<And>id. R (CONS id); \<And>name. R (VAR name);
-  \<And>trm1 trm2. \<lbrakk>R trm1; R trm2\<rbrakk> \<Longrightarrow> R (APP trm1 trm2);
-  \<And>ty name trm. \<lbrakk>Q ty; R trm\<rbrakk> \<Longrightarrow> R (LAM ty name trm)\<rbrakk>
-  \<Longrightarrow> P mkind \<and> Q mty \<and> R mtrm"
-apply(lifting kind_ty_trm.induct)
-done
-
-end
-
-
-
-