--- a/Nominal/Ex/Foo2.thy Tue Dec 07 14:27:39 2010 +0000
+++ b/Nominal/Ex/Foo2.thy Tue Dec 07 19:16:09 2010 +0000
@@ -49,179 +49,9 @@
tests by cu
*}
-lemma set_renaming_perm:
- assumes a: "p \<bullet> bs \<inter> bs = {}"
- and b: "finite bs"
- shows "\<exists>q. q \<bullet> bs = p \<bullet> bs \<and> supp q \<subseteq> bs \<union> (p \<bullet> bs)"
-using b a
-proof (induct)
- case empty
- have "0 \<bullet> {} = p \<bullet> {} \<and> supp (0::perm) \<subseteq> {} \<union> p \<bullet> {}"
- by (simp add: permute_set_eq supp_perm)
- then show "\<exists>q. q \<bullet> {} = p \<bullet> {} \<and> supp q \<subseteq> {} \<union> p \<bullet> {}" by blast
-next
- case (insert a bs)
- then have " \<exists>q. q \<bullet> bs = p \<bullet> bs \<and> supp q \<subseteq> bs \<union> p \<bullet> bs"
- by (perm_simp) (auto)
- then obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> bs \<union> p \<bullet> bs" by blast
- { assume 1: "q \<bullet> a = p \<bullet> a"
- have "q \<bullet> insert a bs = p \<bullet> insert a bs" using 1 * by (simp add: insert_eqvt)
- moreover
- have "supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs"
- using ** by (auto simp add: insert_eqvt)
- ultimately
- have "\<exists>q. q \<bullet> insert a bs = p \<bullet> insert a bs \<and> supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs" by blast
- }
- moreover
- { assume 2: "q \<bullet> a \<noteq> p \<bullet> a"
- def q' \<equiv> "((q \<bullet> a) \<rightleftharpoons> (p \<bullet> a)) + q"
- { have "(q \<bullet> a) \<notin> (p \<bullet> bs)" using `a \<notin> bs` *[symmetric] by (simp add: mem_permute_iff)
- moreover
- have "(p \<bullet> a) \<notin> (p \<bullet> bs)" using `a \<notin> bs` by (simp add: mem_permute_iff)
- ultimately
- have "q' \<bullet> insert a bs = p \<bullet> insert a bs" using 2 * unfolding q'_def
- by (simp add: insert_eqvt swap_set_not_in)
- }
- moreover
- { have "{q \<bullet> a, p \<bullet> a} \<subseteq> insert a bs \<union> p \<bullet> insert a bs"
- using ** `a \<notin> bs` `p \<bullet> insert a bs \<inter> insert a bs = {}`
- by (auto simp add: supp_perm insert_eqvt)
- then have "supp (q \<bullet> a \<rightleftharpoons> p \<bullet> a) \<subseteq> insert a bs \<union> p \<bullet> insert a bs" by (simp add: supp_swap)
- moreover
- have "supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs"
- using ** by (auto simp add: insert_eqvt)
- ultimately
- have "supp q' \<subseteq> insert a bs \<union> p \<bullet> insert a bs"
- unfolding q'_def using supp_plus_perm by blast
- }
- ultimately
- have "\<exists>q. q \<bullet> insert a bs = p \<bullet> insert a bs \<and> supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs" by blast
- }
- ultimately show "\<exists>q. q \<bullet> insert a bs = p \<bullet> insert a bs \<and> supp q \<subseteq> insert a bs \<union> p \<bullet> insert a bs"
- by blast
-qed
-
-
-lemma Abs_rename_set:
- fixes x::"'a::fs"
- assumes a: "(p \<bullet> bs) \<sharp>* (bs, x)"
- and b: "finite bs"
- shows "\<exists>y. [bs]set. x = [p \<bullet> bs]set. y"
-proof -
- from a b have "p \<bullet> bs \<inter> bs = {}" using at_fresh_star_inter by (auto simp add: fresh_star_Pair)
- with set_renaming_perm
- obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> bs \<union> (p \<bullet> bs)" using b by metis
- have "[bs]set. x = q \<bullet> ([bs]set. x)"
- apply(rule perm_supp_eq[symmetric])
- using a **
- unfolding fresh_star_Pair
- unfolding Abs_fresh_star_iff
- unfolding fresh_star_def
- by auto
- also have "\<dots> = [q \<bullet> bs]set. (q \<bullet> x)" by simp
- also have "\<dots> = [p \<bullet> bs]set. (q \<bullet> x)" using * by simp
- finally have "[bs]set. x = [p \<bullet> bs]set. (q \<bullet> x)" .
- then show "\<exists>y. [bs]set. x = [p \<bullet> bs]set. y" by blast
-qed
-lemma Abs_rename_res:
- fixes x::"'a::fs"
- assumes a: "(p \<bullet> bs) \<sharp>* (bs, x)"
- and b: "finite bs"
- shows "\<exists>y. [bs]res. x = [p \<bullet> bs]res. y"
-proof -
- from a b have "p \<bullet> bs \<inter> bs = {}" using at_fresh_star_inter by (simp add: fresh_star_Pair)
- with set_renaming_perm
- obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> bs \<union> (p \<bullet> bs)" using b by metis
- have "[bs]res. x = q \<bullet> ([bs]res. x)"
- apply(rule perm_supp_eq[symmetric])
- using a **
- unfolding fresh_star_Pair
- unfolding Abs_fresh_star_iff
- unfolding fresh_star_def
- by auto
- also have "\<dots> = [q \<bullet> bs]res. (q \<bullet> x)" by simp
- also have "\<dots> = [p \<bullet> bs]res. (q \<bullet> x)" using * by simp
- finally have "[bs]res. x = [p \<bullet> bs]res. (q \<bullet> x)" .
- then show "\<exists>y. [bs]res. x = [p \<bullet> bs]res. y" by blast
-qed
+text {* *}
-lemma list_renaming_perm:
- fixes bs::"atom list"
- assumes a: "(p \<bullet> (set bs)) \<inter> (set bs) = {}"
- shows "\<exists>q. q \<bullet> bs = p \<bullet> bs \<and> supp q \<subseteq> (set bs) \<union> (p \<bullet> (set bs))"
-using a
-proof (induct bs)
- case Nil
- have "0 \<bullet> [] = p \<bullet> [] \<and> supp (0::perm) \<subseteq> set [] \<union> p \<bullet> set []"
- by (simp add: permute_set_eq supp_perm)
- then show "\<exists>q. q \<bullet> [] = p \<bullet> [] \<and> supp q \<subseteq> set [] \<union> p \<bullet> (set [])" by blast
-next
- case (Cons a bs)
- then have " \<exists>q. q \<bullet> bs = p \<bullet> bs \<and> supp q \<subseteq> set bs \<union> p \<bullet> (set bs)"
- by (perm_simp) (auto)
- then obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> set bs \<union> p \<bullet> (set bs)" by blast
- { assume 1: "a \<in> set bs"
- have "q \<bullet> a = p \<bullet> a" using * 1 by (induct bs) (auto)
- then have "q \<bullet> (a # bs) = p \<bullet> (a # bs)" using * by simp
- moreover
- have "supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" using ** by (auto simp add: insert_eqvt)
- ultimately
- have "\<exists>q. q \<bullet> (a # bs) = p \<bullet> (a # bs) \<and> supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" by blast
- }
- moreover
- { assume 2: "a \<notin> set bs"
- def q' \<equiv> "((q \<bullet> a) \<rightleftharpoons> (p \<bullet> a)) + q"
- { have "(q \<bullet> a) \<sharp> (p \<bullet> bs)" using `a \<notin> set bs` *[symmetric]
- by (simp add: fresh_permute_iff) (simp add: fresh_def supp_of_atom_list)
- moreover
- have "(p \<bullet> a) \<sharp> (p \<bullet> bs)" using `a \<notin> set bs`
- by (simp add: fresh_permute_iff) (simp add: fresh_def supp_of_atom_list)
- ultimately
- have "q' \<bullet> (a # bs) = p \<bullet> (a # bs)" using 2 * unfolding q'_def
- by (simp add: swap_fresh_fresh)
- }
- moreover
- { have "{q \<bullet> a, p \<bullet> a} \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))"
- using ** `a \<notin> set bs` `p \<bullet> (set (a # bs)) \<inter> set (a # bs) = {}`
- by (auto simp add: supp_perm insert_eqvt)
- then have "supp (q \<bullet> a \<rightleftharpoons> p \<bullet> a) \<subseteq> set (a # bs) \<union> p \<bullet> set (a # bs)" by (simp add: supp_swap)
- moreover
- have "supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))"
- using ** by (auto simp add: insert_eqvt)
- ultimately
- have "supp q' \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))"
- unfolding q'_def using supp_plus_perm by blast
- }
- ultimately
- have "\<exists>q. q \<bullet> (a # bs) = p \<bullet> (a # bs) \<and> supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))" by blast
- }
- ultimately show "\<exists>q. q \<bullet> (a # bs) = p \<bullet> (a # bs) \<and> supp q \<subseteq> set (a # bs) \<union> p \<bullet> (set (a # bs))"
- by blast
-qed
-
-
-lemma Abs_rename_list:
- fixes x::"'a::fs"
- assumes a: "(p \<bullet> (set bs)) \<sharp>* (bs, x)"
- shows "\<exists>y. [bs]lst. x = [p \<bullet> bs]lst. y"
-proof -
- from a have "p \<bullet> (set bs) \<inter> (set bs) = {}" using at_fresh_star_inter
- by (simp add: fresh_star_Pair fresh_star_set)
- with list_renaming_perm
- obtain q where *: "q \<bullet> bs = p \<bullet> bs" and **: "supp q \<subseteq> set bs \<union> (p \<bullet> set bs)" by metis
- have "[bs]lst. x = q \<bullet> ([bs]lst. x)"
- apply(rule perm_supp_eq[symmetric])
- using a **
- unfolding fresh_star_Pair
- unfolding Abs_fresh_star_iff
- unfolding fresh_star_def
- by auto
- also have "\<dots> = [q \<bullet> bs]lst. (q \<bullet> x)" by simp
- also have "\<dots> = [p \<bullet> bs]lst. (q \<bullet> x)" using * by simp
- finally have "[bs]lst. x = [p \<bullet> bs]lst. (q \<bullet> x)" .
- then show "\<exists>y. [bs]lst. x = [p \<bullet> bs]lst. y" by blast
-qed
(*
thm at_set_avoiding1[THEN exE]