--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/nominal_termination.ML Tue Jul 19 09:35:24 2011 +0100
@@ -0,0 +1,112 @@
+(* Nominal Termination
+ Author: Christian Urban
+
+ heavily based on the code of Alexander Krauss
+ (code forked on 18 July 2011)
+
+Redefinition of the termination command
+*)
+
+signature NOMINAL_FUNCTION_TERMINATION =
+sig
+ include NOMINAL_FUNCTION_DATA
+
+ val termination : term option -> local_theory -> Proof.state
+ val termination_cmd : string option -> local_theory -> Proof.state
+
+end
+
+structure Nominal_Function_Termination : NOMINAL_FUNCTION_TERMINATION =
+struct
+
+open Function_Lib
+open Function_Common
+open Nominal_Function_Common
+
+val simp_attribs = map (Attrib.internal o K)
+ [Simplifier.simp_add,
+ Code.add_default_eqn_attribute,
+ Nitpick_Simps.add]
+
+val eqvt_attrib = Attrib.internal (K Nominal_ThmDecls.eqvt_add)
+
+fun prepare_termination_proof prep_term raw_term_opt lthy =
+ let
+ val term_opt = Option.map (prep_term lthy) raw_term_opt
+ val info = the (case term_opt of
+ SOME t => (import_function_data t lthy
+ handle Option.Option =>
+ error ("Not a function: " ^ quote (Syntax.string_of_term lthy t)))
+ | NONE => (import_last_function lthy handle Option.Option => error "Not a function"))
+
+ val { termination, fs, R, add_simps, case_names, psimps,
+ pinducts, defname, eqvts, ...} = info
+ val domT = domain_type (fastype_of R)
+ val goal = HOLogic.mk_Trueprop
+ (HOLogic.mk_all ("x", domT, mk_acc domT R $ Free ("x", domT)))
+ fun afterqed [[totality]] lthy =
+ let
+ val totality = Thm.close_derivation totality
+ val remove_domain_condition =
+ full_simplify (HOL_basic_ss addsimps [totality, @{thm True_implies_equals}])
+ val tsimps = map remove_domain_condition psimps
+ val tinduct = map remove_domain_condition pinducts
+ val teqvts = map remove_domain_condition eqvts
+
+ fun qualify n = Binding.name n
+ |> Binding.qualify true defname
+ in
+ lthy
+ |> add_simps I "simps" I simp_attribs tsimps
+ ||>> Local_Theory.note ((qualify "eqvt", [eqvt_attrib]), teqvts)
+ ||>> Local_Theory.note
+ ((qualify "induct",
+ [Attrib.internal (K (Rule_Cases.case_names case_names))]),
+ tinduct)
+ |-> (fn ((simps, (_, eqvts)), (_, inducts)) => fn lthy =>
+ let val info' = { is_partial=false, defname=defname, add_simps=add_simps,
+ case_names=case_names, fs=fs, R=R, psimps=psimps, pinducts=pinducts,
+ simps=SOME simps, inducts=SOME inducts, termination=termination, eqvts=eqvts }
+ in
+ (info',
+ lthy
+ |> Local_Theory.declaration false (add_function_data o morph_function_data info')
+ |> Spec_Rules.add Spec_Rules.Equational (fs, tsimps))
+ end)
+ end
+ in
+ (goal, afterqed, termination)
+ end
+
+fun gen_termination prep_term raw_term_opt lthy =
+ let
+ val (goal, afterqed, termination) = prepare_termination_proof prep_term raw_term_opt lthy
+ in
+ lthy
+ |> Proof_Context.note_thmss ""
+ [((Binding.empty, [Context_Rules.rule_del]), [([allI], [])])] |> snd
+ |> Proof_Context.note_thmss ""
+ [((Binding.empty, [Context_Rules.intro_bang (SOME 1)]), [([allI], [])])] |> snd
+ |> Proof_Context.note_thmss ""
+ [((Binding.name "termination", [Context_Rules.intro_bang (SOME 0)]),
+ [([Goal.norm_result termination], [])])] |> snd
+ |> Proof.theorem NONE (snd oo afterqed) [[(goal, [])]]
+ end
+
+val termination = gen_termination Syntax.check_term
+val termination_cmd = gen_termination Syntax.read_term
+
+(* outer syntax *)
+
+val option_parser =
+ (Scan.optional (Parse.$$$ "(" |-- Parse.!!!
+ (Parse.reserved "eqvt" >> K true) --| Parse.$$$ ")") false)
+
+val _ =
+ Outer_Syntax.local_theory_to_proof "termination" "prove termination of a recursive function"
+ Keyword.thy_goal
+ (option_parser -- Scan.option Parse.term >>
+ (fn (is_eqvt, trm) =>
+ if is_eqvt then termination_cmd trm else Function.termination_cmd trm))
+
+end