--- a/Nominal/Abs.thy Sat Mar 27 09:15:09 2010 +0100
+++ b/Nominal/Abs.thy Sat Mar 27 09:21:43 2010 +0100
@@ -447,8 +447,9 @@
lemma Abs_eq_iff:
shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
- by (lifting alpha_abs.simps(1))
-
+ and "Abs_res bs x = Abs_res cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>res (op =) supp p (cs, y))"
+ and "Abs_lst bsl x = Abs_lst csl y \<longleftrightarrow> (\<exists>p. (bsl, x) \<approx>lst (op =) supp p (csl, y))"
+ by (lifting alphas_abs)
lemma split_rsp2[quot_respect]: "((R1 ===> R2 ===> prod_rel R1 R2 ===> op =) ===>
prod_rel R1 R2 ===> prod_rel R1 R2 ===> op =) split split"