--- a/FSet.thy Sat Nov 28 05:47:13 2009 +0100
+++ b/FSet.thy Sat Nov 28 05:49:16 2009 +0100
@@ -322,7 +322,7 @@
lemma "CARD x = Suc n \<Longrightarrow> (\<exists>a b. \<not> IN a b & x = INSERT a b)"
apply (tactic {* lift_tac_fset @{context} @{thm card1_suc} 1 *})
-oops
+done
lemma "(\<not> IN x xa) = (CARD (INSERT x xa) = Suc (CARD xa))"
apply (tactic {* lift_tac_fset @{context} @{thm not_mem_card1} 1 *})
@@ -347,7 +347,7 @@
lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
-apply(tactic {* regularize_tac @{context} rel_eqv [rel_refl] 1 *})
+apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
prefer 2
apply(rule cheat)
apply(tactic {* r_mk_comb_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
@@ -450,7 +450,7 @@
(* Construction site starts here *)
lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
apply (tactic {* procedure_tac @{context} @{thm list_induct_part} 1 *})
-apply (tactic {* regularize_tac @{context} rel_eqv [rel_refl] 1 *})
+apply (tactic {* regularize_tac @{context} [rel_eqv] 1 *})
apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
apply (rule FUN_QUOTIENT)
apply (rule FUN_QUOTIENT)