--- a/Nominal/Ex/Lambda.thy Mon Jul 18 10:50:21 2011 +0100
+++ b/Nominal/Ex/Lambda.thy Mon Jul 18 17:40:13 2011 +0100
@@ -43,7 +43,17 @@
apply(all_trivials)
done
-termination by lexicographic_order
+termination (eqvt) by lexicographic_order
+
+ML {*
+Item_Net.content;
+Nominal_Function_Common.get_function
+*}
+
+ML {*
+Item_Net.content (Nominal_Function_Common.get_function @{context})
+*}
+
lemma [eqvt]:
shows "(p \<bullet> (is_app t)) = is_app (p \<bullet> t)"
@@ -65,7 +75,7 @@
apply(simp_all)
done
-termination by lexicographic_order
+termination (eqvt) by lexicographic_order
lemma [eqvt]:
shows "(p \<bullet> (rator t)) = rator (p \<bullet> t)"
@@ -87,7 +97,7 @@
apply(simp_all)
done
-termination by lexicographic_order
+termination (eqvt) by lexicographic_order
lemma [eqvt]:
shows "(p \<bullet> (rand t)) = rand (p \<bullet> t)"
@@ -118,7 +128,7 @@
apply(rule refl)
done
-termination by lexicographic_order
+termination (eqvt) by lexicographic_order
nominal_datatype path = Left | Right | In
@@ -155,7 +165,7 @@
apply(rule refl)
done
-termination by lexicographic_order
+termination (eqvt) by lexicographic_order
lemma var_pos1:
assumes "atom y \<notin> supp t"
@@ -195,7 +205,7 @@
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
-termination by lexicographic_order
+termination (eqvt) by lexicographic_order
section {* free name function *}
@@ -221,7 +231,7 @@
apply(simp add: eqvt_at_def removeAll_eqvt atom_eqvt)
done
-termination by lexicographic_order
+termination (eqvt) by lexicographic_order
text {* a small test lemma *}
lemma shows "supp t = set (frees_lst t)"
@@ -249,7 +259,7 @@
apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
done
-termination
+termination (eqvt)
by lexicographic_order
lemma "frees_set t = supp t"
@@ -272,7 +282,7 @@
apply(simp_all add: fresh_def pure_supp eqvt_at_def fresh_star_def)
done
-termination
+termination (eqvt)
by lexicographic_order
thm height.simps
@@ -300,7 +310,7 @@
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
-termination
+termination (eqvt)
by lexicographic_order
lemma subst_eqvt[eqvt]:
@@ -486,7 +496,7 @@
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
-termination
+termination (eqvt)
by lexicographic_order
@@ -513,7 +523,7 @@
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
-termination
+termination (eqvt)
by lexicographic_order
@@ -543,7 +553,7 @@
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
done
-termination
+termination (eqvt)
by lexicographic_order
section {* De Bruijn Terms *}
@@ -594,7 +604,7 @@
apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq eqvts eqvts_raw)+
done
-termination
+termination (eqvt)
by lexicographic_order
lemma transdb_eqvt[eqvt]:
@@ -665,7 +675,7 @@
(* a small test
-termination sorry
+termination (eqvt) sorry
lemma
assumes "x \<noteq> y"
@@ -719,7 +729,7 @@
apply (simp add: eqvt_def permute_fun_app_eq)
done
-termination
+termination (eqvt)
by lexicographic_order